已知函數(shù),且.則(   )

A. B.
C. D.

B

解析試題分析:∵,∴函數(shù)的對稱為x=-1,∴函數(shù)在[-1,+)上單調(diào)遞增,又1>0>-1,且f(0)=c,∴,故選B
考點:本題考查了函數(shù)性質(zhì)的運用
點評:對于此類問題要掌握題目中式子的轉(zhuǎn)換關系,培養(yǎng)學生靈活運用函數(shù)奇偶性與單調(diào)性解決問題的能力及創(chuàng)造性

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

下列四個數(shù)中,其倒數(shù)是負整數(shù)的是【   】

A.3B.C.-2D.-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設函數(shù)滿足,且當時,.又函數(shù),則函數(shù)上的零點個數(shù)為(    )

A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

定義在上的奇函數(shù)滿足,且在區(qū)間上是增函數(shù),則(  )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

定義在上的偶函數(shù)滿足,且在上是減函數(shù),是鈍角三角形的兩個銳角,則下列結論正確的是(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

定義運算:,則函數(shù)的值域為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

定義函數(shù),若存在常數(shù)C,對任意的,存在唯一的,使得,則稱函數(shù)在D上的幾何平均數(shù)為C.已知,則函數(shù)上的幾何平均數(shù)為(     )
A.        B.       C.      D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

   

A.R B.[-9,+C.[-8,1] D.[-9,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知上是減函數(shù),那么(   )

A.有最小值9 B.有最大值9 C.有最小值-9 D.有最大值-9

查看答案和解析>>

同步練習冊答案