已知,如圖,AB是⊙O的直徑,AC切⊙O于點(diǎn)A,AC=AB,CO交⊙O于點(diǎn)P,CO的延長線交⊙O于點(diǎn)F,   BP的延長線交AC于點(diǎn)E.

⑴求證:FA∥BE;

⑵求證:

【解析】本試題主要是考查了平面幾何中圓與三角形的綜合運(yùn)用。

(1)要證明線線平行,主要是通過證明線線平行的判定定理得到

(2)利用三角形△APC∽△FAC相似,來得到線段成比列的結(jié)論。

證明:(1)在⊙O中,∵直徑AB與FP交于點(diǎn)O ∴OA=OF

 ∴∠OAF=∠F  ∵∠B=∠F  ∴∠OAF=∠B ∴FA∥BE

(2)∵AC為⊙O的切線,PA是弦  ∴∠PAC=∠F

∵∠C=∠C ∴△APC∽△FAC  ∴

 ∵AB=AC  ∴

 

【答案】

見解析

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),CD⊥AB,垂足為D,點(diǎn)P在BA的延長線上,且PC是圓O的切線.
(1)求證:∠PCD=∠POC;
(2)若OD:DA=1:2,PA=8,求圓的半徑的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),CD⊥AB,垂足為D,點(diǎn)P在BA的延長線上,且PC是圓O的切線.
(1)求證:∠PCD=∠POC;
(2)若OD:DA=1:2,PA=8,求圓的半徑的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的弦,點(diǎn)C在
AB
上.
(1)若∠OAB=35°,求∠AOB的度數(shù);
(2)過點(diǎn)C作CD∥AB,若CD是⊙O的切線,求證:點(diǎn)C是
AB
的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-1:幾何證明選講】
已知,如圖,AB是⊙O的直徑,AC切⊙O于點(diǎn)A,AC=AB,CO交⊙O于點(diǎn)P,CO的延長線交⊙O于點(diǎn)F,BP的延長線交AC于點(diǎn)E.
(1)求證:FA∥BE;
(2)求證:
AP
PC
=
FA
AB

(3)若⊙O的直徑AB=2,求tan∠PFA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖,AB是圓C:x2+y2+4x-12y+24=0的弦,且過點(diǎn)P(0,5).
(Ⅰ)若弦AB的長為4
3
,求直線AB的方程;
(Ⅱ)求弦AB中點(diǎn)D的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案