【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 方向上的投影.

【答案】
(1)解:由

可得

可得 ,

,

,


(2)解:由正弦定理, ,所以 = ,

由題意可知a>b,即A>B,所以B= ,

由余弦定理可知

解得c=1,c=﹣7(舍去).

向量 方向上的投影: =ccosB=


【解析】(1)由已知條件利用三角形的內(nèi)角和以及兩角差的余弦函數(shù),求出A的余弦值,然后求sinA的值;(2)利用 ,b=5,結(jié)合正弦定理,求出B的正弦函數(shù),求出B的值,利用余弦定理求出c的大。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的余弦公式和二倍角的正弦公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握兩角和與差的余弦公式:;二倍角的正弦公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程和函數(shù)的極值:

(2)若對(duì)任意,都有成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣mx+m,m、x∈R.
(1)若關(guān)于x的不等式f(x)>0的解集為R,求m的取值范圍;
(2)若實(shí)x1 , x2數(shù)滿足x1<x2 , 且f(x1)≠f(x2),證明:方程f(x)= [f(x1)+f(x2)]至少有一個(gè)實(shí)根x0∈(x1 , x2);
(3)設(shè)F(x)=f(x)+1﹣m﹣m2 , 且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列命題:
①雙曲線與橢圓有相同的焦點(diǎn);
②“”是“2x2﹣5x﹣3<0”必要不充分條件;
③“若xy=0,則x、y中至少有一個(gè)為0”的否命題是真命題.;
④若p是q的充分條件,r是q的必要條件,r是s的充要條件,則s是p的必要條件;
其中是真命題的有: .(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夾角為銳角,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+2sinα(α∈(0,))的導(dǎo)函數(shù)f′(x),若存在x0<1使得f′(x0)=f(x0)成立,則實(shí)數(shù)α的取值范圍為( 。
A.( ,
B.(0,
C.(
D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的準(zhǔn)線為,取過焦點(diǎn)且平行于軸的直線與拋物線交于不同的兩點(diǎn),過作圓心為的圓,使拋物線上其余點(diǎn)均在圓外,且. 

(Ⅰ)求拋物線和圓的方程;

(Ⅱ)過點(diǎn)作直線與拋物線和圓依次交于,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知
(1)求 的值;
(2)若cosB= ,△ABC的周長為5,求b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式.
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案