【題目】袋中有相同的5個白球和4個黑球,從中任意摸出3個,求下列事件發(fā)生的概率.

1)摸出的全是白球或全是黑球、

2)摸出的白球個數(shù)多于黑球個數(shù).

【答案】12

【解析】

1)從袋中任意摸出3個球有種不同情況,摸出的全是白球有種不同情況,摸出的全是黑球有種不同情況,計(jì)算概率得到答案.

2)摸出的3個球都是白球的事件,記為;摸出2個白球,1個黑球的事件,記為.計(jì)算概率得到答案.

1)設(shè)從袋中摸出的3個球全是白球或全是黑球的事件為,

從袋中任意摸出3個球有種不同情況,

摸出的全是白球有種不同情況,

摸出的全是黑球有種不同情況,

因?yàn)閺拇腥我饷?/span>3個球的所有情況都是等可能的,

所以.

2)設(shè)從袋中摸出的白球個數(shù)多于黑球個數(shù)的事件為.

事件包含兩個基本事件:

第一個,摸出的3個球都是白球的事件,記為;

第二個,摸出2個白球,1個黑球的事件,記為.

.

所以,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,圓.

1)求的取值范圍,并求出圓心坐標(biāo);

2)有一動圓的半徑為,圓心在上,若動圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)到定直線的距離比到定點(diǎn)的距離大2.

(1)求動點(diǎn)的軌跡的方程;

(2)在軸正半軸上,是否存在某個確定的點(diǎn),過該點(diǎn)的動直線與曲線交于,兩點(diǎn),使得為定值.如果存在,求出點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知

1)求橢圓的離心率;

2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn),經(jīng)過原點(diǎn)的直線與該圓相切,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),射線與橢圓交于點(diǎn),過點(diǎn)的直線與橢圓有且只有一個公共點(diǎn),直線與橢圓交于,兩個相異點(diǎn),證明:面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),射線與橢圓交于點(diǎn),過點(diǎn)的直線與橢圓有且只有一個公共點(diǎn),直線與橢圓交于,兩個相異點(diǎn),證明:面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等高的正三棱錐P-ABC與圓錐SO的底面都在平面M上,且圓O過點(diǎn)A,又圓O的直徑ADBC,垂足為E,設(shè)圓錐SO的底面半徑為1,圓錐體積為

(1)求圓錐的側(cè)面積;

(2)求異面直線ABSD所成角的大。

(3)若平行于平面M的一個平面N截得三棱錐與圓錐的截面面積之比為,求三棱錐的側(cè)棱PA與底面ABC所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過點(diǎn),且與圓外切于點(diǎn),過點(diǎn)作圓C的兩條切線PM,PN,切點(diǎn)為M,N.

(1)求圓C的標(biāo)準(zhǔn)方程;

(2)試問直線MN是否恒過定點(diǎn)?若過定點(diǎn),請求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, ,且 , , .

)求證:平面平面;

)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案