設(shè)F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),雙曲線上存在一點(diǎn)P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,則該雙曲線的離心率為(  )
A、
4
3
B、
5
3
C、
9
4
D、3
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:不妨設(shè)右支上P點(diǎn)的橫坐標(biāo)為x,由焦半徑公式有|PF1|=ex+a,|PF2|=ex-a,結(jié)合條件可得a=
3
4
b,從而c=
a2+b2
=
5
4
b,即可求出雙曲線的離心率.
解答: 解:不妨設(shè)右支上P點(diǎn)的橫坐標(biāo)為x
由焦半徑公式有|PF1|=ex+a,|PF2|=ex-a,
∵|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,
∴2ex=3b,(ex)2-a2=
9
4
ab
9
4
b2-a2=
9
4
ab,即9b2-4a2-9ab=0,
∴(3b-4a)(3b+a)=0
∴a=
3
4
b,
∴c=
a2+b2
=
5
4
b,
∴e=
c
a
=
5
3

故選:B.
點(diǎn)評(píng):本題主要考查了雙曲線的簡單性質(zhì),考查了雙曲線的第二定義的靈活運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某項(xiàng)研究表明:在考慮行車安全的情況下,某路段車流量F(單位時(shí)間內(nèi)經(jīng)過測量點(diǎn)的車輛數(shù),單位:輛/小時(shí))與車流速度v(假設(shè)車輛以相同速度v行駛,單位:米/秒)、平均車長l(單位:米)的值有關(guān),其公式為F=
76000v
v2+18v+20l

(Ⅰ)如果不限定車型,l=6.05,則最大車流量為
 
輛/小時(shí);
(Ⅱ)如果限定車型,l=5,則最大車流量比(Ⅰ)中的最大車流量增加
 
輛/小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合A={x|x2-9<0},B={x|-1<x≤5},則A∩(∁RB)=(  )
A、(-3,0)
B、(-3,-1)
C、(-3,-1]
D、(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x+2y≤8
0≤x≤4
0≤y≤3
,則z=2x+y的最大值等于( 。
A、7B、8C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意等比數(shù)列{an},下列說法一定正確的是( 。
A、a1,a3,a9成等比數(shù)列
B、a2,a3,a6成等比數(shù)列
C、a2,a4,a8成等比數(shù)列
D、a3,a6,a9成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出s的值為( 。
A、10B、17C、19D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα>0,則( 。
A、sinα>0
B、cosα>0
C、sin2α>0
D、cos2α>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:f(x)=
x-m+1
x-m
在區(qū)間(1,+∞)上時(shí)減函數(shù);命題q:?a≥0,使得ax2+2x+1<0,且關(guān)于m的不等式 m2+5m-5≥a恒成立,若p∨q為真命題,p∧q為假命題,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)x,y滿足x+3y=5xy,則x+y的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案