若變量x,y滿足約束條件
x+2y≤8
0≤x≤4
0≤y≤3
,則z=2x+y的最大值等于(  )
A、7B、8C、10D、11
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,進(jìn)行平移即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:

由z=2x+y,得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)B(4,2)時(shí),
直線y=-2x+z的截距最大,此時(shí)z最大,此時(shí)z=2×4+2=10,
故選:C
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

要制作一個(gè)容器為4m3,高為1m的無蓋長方形容器,已知該容器的底面造價(jià)是每平方米20元,側(cè)面造價(jià)是每平方米10元,則該容器的最低總造價(jià)是
 
(單位:元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)部為-2,虛部為1的復(fù)數(shù)所對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)的( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若空間中四條兩兩不同的直線l1,l2,l3,l4,滿足l1⊥l2,l2∥l3,l3⊥l4,則下列結(jié)論一定正確的是( 。
A、l1⊥l4
B、l1∥l4
C、l1與l4既不垂直也不平行
D、l1與l4的位置關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個(gè)底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,則切削掉部分的體積與原來毛坯體積的比值為( 。
A、
17
27
B、
5
9
C、
10
27
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i為虛數(shù)單位,(
1-i
1+i
2=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),雙曲線上存在一點(diǎn)P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,則該雙曲線的離心率為( 。
A、
4
3
B、
5
3
C、
9
4
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2nan+1-3n2-4n,n∈N*,且S3=15.
(1)求a1,a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,C為⊙O上一點(diǎn),以C為切點(diǎn)的切線交AB的延長線于點(diǎn)P,AM⊥CP,垂足為M,CD⊥AB,垂足為D.
(1)求證:AD=AM;
(2)若⊙O的直徑為2,∠PCB=30°,求PC的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案