已知直角坐標平面內(nèi)點
,一曲線
經(jīng)過點
,且
(1)求曲線
的方程;
(2)設
,若
,求點
的橫坐標的取值范圍.
根據(jù)定義知曲線C的軌跡是焦點在
軸上的橢圓 -------------------2分
設橢圓方程為
,
橢圓方程為
--------------------5分
設點
,
-------------------8分
建立不等式
,解出
-------------------10分
因為點
在橢圓上,
所以點
的橫坐標的取值范圍
-------------------12分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
在正四面體P-ABC中,M為
ABC內(nèi)(含邊界)一動點,且到三個側(cè)面PAB,PBC,PCA的距離成等差數(shù)列,則點M的軌跡是( )
A.一條線段 | B.橢圓的一部分 |
C.雙曲線的一部分 | D.拋物線的一部分 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分15分)如圖,在
中,點
的坐標為
,點
在
軸上,點
在
軸的正半軸上,
,在
的延長線上取一點
,使
.
(Ⅰ)當點
在
軸上移動時,求動點
的軌跡
;
(Ⅱ)自點
引直線與軌跡
交于不同的兩點
、
,點
關于
軸的對稱點
記為
,設
,點
的坐標為
.
(1)求證:
;
(2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)分別以雙曲線
的焦點為頂點,以雙曲線G的頂點為焦點作橢圓C。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P的坐標為
,在y軸上是否存在定點M,過點M且斜率為k的動直線
交橢圓于A、B兩點,使以AB為直徑的圓恒過點P,若存在,求出M的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓:
,過坐標原點O作兩條互相垂直的射線,與橢圓分別交于A,B兩點.
(I)求證O到直線AB的距離為定值.
(Ⅱ)求△0AB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
在平面直角坐標系中,N為圓C:
上的一動點,點D(1,0),點M是DN的中點,點P在線段CN上,且
.
(Ⅰ)求動點P表示的曲線E的方程;
(Ⅱ)若曲線E與x軸的交點為
,當動點P與A,B不重合時,設直線
與
的斜率分別為
,證明:
為定值;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
點M到(3,0)的距離比它到直線ⅹ+4=0的距離小1,則點M的軌跡方程為( )
A.y²=12ⅹ | B.y²=12ⅹ(ⅹ?0) |
C.y²=6ⅹ | D.y²=6ⅹ(ⅹ?0) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知a、b、c分別為雙曲線的實半軸長、虛半軸長、半焦距,且方程
無實根,則雙曲線離心率的取值范圍是( )
查看答案和解析>>