10.已知m>-2,求$\frac{4}{m+2}$+2m的最小值及最小值時m的值.

分析 當(dāng)m>-2,變形$\frac{4}{m+2}$+2m=$2(\frac{2}{m+2}+m+2)$-4,利用基本不等式的性質(zhì)即可得出.

解答 解:當(dāng)m>-2,
$\frac{4}{m+2}$+2m=$2(\frac{2}{m+2}+m+2)$-4$≥2×2\sqrt{\frac{2}{m+2}•(m+2)}$-4=4$\sqrt{2}$-4,當(dāng)且僅當(dāng)m=$\sqrt{2}$-2時取等號.

點評 本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知 $sin(α+\frac{π}{6})-cosα=\frac{1}{3}$,則 $2sinαcos(α+\frac{π}{6})$=( 。
A.$-\frac{5}{18}$B.$\frac{5}{18}$C.$-\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(3,m).若向量$\overrightarrow$在$\overrightarrow{a}$方向上的投影為3,則實數(shù)m=( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.0D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.我們知道,以正三角形的三邊中點為頂點的三角形與原三角形的面積之比為1:4,類比該命題得,以正四面體的四個面的中心為頂點的四面體與原四面體的體積之比為$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,若AC=5,∠A=120°,三角形的面積$\frac{15\sqrt{3}}{4}$,則BC的長度為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某牛奶廠要將一批牛奶用汽車從所在城市甲運至城市乙,已知從城市甲到城市乙只有兩條公路,且運費由廠商承擔(dān).若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運送牛奶,已知下表內(nèi)的信息:
統(tǒng)計信息在不堵車的情況下到達城市乙所需時間(天)在堵車的情況下到達城市乙所需時間(天)堵車的概率運費(萬元)
公路123$\frac{1}{10}$1.6
公路214$\frac{1}{2}$0.8
(Ⅰ)記汽車選擇公路1運送牛奶時牛奶廠獲得的毛收入為ξ(單位:萬元),求ξ的分布列和數(shù)學(xué)期望E(ξ);
(Ⅱ)如果你是牛奶廠的決策者,你選擇哪條公路運送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費用-運費)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=asinωxcosωx+$\sqrt{3}$cos2ωx(a>0,ω>0)的最小正周期為$\frac{π}{2}$,最小值為-$\frac{\sqrt{3}}{2}$,將函數(shù)f(x)的圖象向左平移φ(φ>0)個單位后,得到的函數(shù)圖象的一條對稱軸為x=$\frac{π}{8}$,則φ的值不可能為( 。
A.$\frac{5π}{24}$B.$\frac{13π}{24}$C.$\frac{17π}{24}$D.$\frac{23π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項和為Sn,且Sn+1+Sn=(n+1)an+1-$\frac{1}{2}$an-1,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求數(shù)列{an}的通項公式
(2)設(shè)a2=6,求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}.滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項分別加上1,1,3后成等比數(shù)列,an+2log2bn=-1.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式;
(Ⅱ)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案