分析 (Ⅰ))由PA=PD,得到PQ⊥AD,又底面ABCD為菱形,∠BAD=60°,得BQ⊥AD,利用線面垂直的判定定理得到AD⊥平面PQB利用面面垂直的判定定理得到平面PQB⊥平面PAD;
(Ⅱ)以Q為坐標(biāo)原點(diǎn),分別以QA,QB,QP為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出存在點(diǎn)M為線段PC靠近P的三等分點(diǎn)滿足題意,再利用錐體體積公式求出.
解答 (I)證明:∵PA=PD,Q為AD的中點(diǎn),∴PQ⊥AD,
又∵底面ABCD為菱形,∠BAD=60°,∴BQ⊥AD,
又PQ∩BQ=Q,∴AD⊥平面PQB,
又∵AD?平面PAD,∴平面PQB⊥平面PAD;----------------(6分)
(II)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,
∴PQ⊥平面ABCD,
以Q為坐標(biāo)原點(diǎn),分別以QA,QB,QP為x,y,z軸,建立空間直角坐標(biāo)系,如圖,則Q(0,0,0),P(0,0,$\sqrt{3}$),B(0,$\sqrt{3}$,0),C(-2,$\sqrt{3}$,0)
設(shè)$\overrightarrow{PM}$=λ$\overrightarrow{PC}$,0<λ<1,則M(-2λ,$\sqrt{3}λ$,$\sqrt{3}$(1-λ)),
平面CBQ的一個法向量$\overrightarrow{{n}_{1}}$=(0,0,1),
設(shè)平面MBQ的法向量為$\overrightarrow{{n}_{2}}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{QM}•\overrightarrow{{n}_{2}}=0}\\{\overrightarrow{QB}•\overrightarrow{{n}_{2}}=0}\end{array}\right.$,得$\overrightarrow{{n}_{2}}$=($\frac{3-3λ}{2λ}$,0,$\sqrt{3}$),
∵二面角M-BQ-C的大小為60°,
∴cos60°=|cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>|=|$\frac{\sqrt{3}}{\sqrt{(\frac{3-3λ}{2λ})^{2}+3}}$|=$\frac{1}{2}$,
解得λ=$\frac{1}{3}$,∴MC=2PM,
∴三棱錐M-BCQ的體積=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×\frac{2}{3}×\sqrt{3}$=$\frac{2}{3}$.
點(diǎn)評 本題給出特殊四棱錐,求證面面垂直并求錐體體積,著重考查了平面與平面垂直的判定、平面與平面垂直的性質(zhì)和體積公式等知識,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
y1 | y2 | |
x1 | 15 | 5 |
x2 | 20 | 20 |
A. | 90% | B. | 95% | C. | 97.5% | D. | 99% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -i | B. | i | C. | 1+i | D. | 1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com