不等式
x+1
2-x
≤0
的解集為( 。
分析:先將分式不等式轉(zhuǎn)化為一元二次不等式,再求出相應(yīng)的解集即可.
解答:解:原不等式等價(jià)于:(x+1)(2-x)≤0且2-x≠0
∴x≤-1,或x>2
∴原不等式的解集為{x|x≤-1或x>2}
故選
點(diǎn)評(píng):本題考查的重點(diǎn)是分式不等式,解題的關(guān)鍵是轉(zhuǎn)化為一元二次不等式,一定要注意分母不等于0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若整數(shù)m滿足不等式x-
1
2
≤m<x+
1
2
,x∈R
,則稱m為x的“親密整數(shù)”,記作{x},即{x}=m,已知函數(shù)f(x)x-{x}.給出以下四個(gè)命題:
①函數(shù)y=f(x),x∈R是周期函數(shù)且其最小正周期為1;
②函數(shù)y=f(x),x∈R的圖象關(guān)于點(diǎn)(k,0),k∈Z中心對(duì)稱;
③函數(shù)y=f(x),x∈R在[-
1
2
,
1
2
]
上單調(diào)遞增;
④方程f(x)=
1
2
sin(π•x)
在[-2,2]上共有7個(gè)不相等的實(shí)數(shù)根.
其中正確命題的序號(hào)是
①④
①④
.(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•丹東模擬)已知a>0,設(shè)函數(shù)f(x)=alnx-2
a
•x+2a
,g(x)=
1
2
(x-2
a
)2

(Ⅰ)求函數(shù)h(x)=f(x)-g(x)的最大值;
(Ⅱ)若e是自然對(duì)數(shù)的底數(shù),當(dāng)a=e時(shí),是否存在常數(shù)k、b,使得不等式f(x)≤kx+b≤g(x)對(duì)于任意的正實(shí)數(shù)x都成立?若存在,求出k、b的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•綿陽(yáng)二模)不等式
x+12-x
≥0的解集為
[-1,2)
[-1,2)
.(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•福建)選修4-5:不等式選講
設(shè)不等式|x-2|<a(a∈N*)的解集為A,且
3
2
∈A,
1
2
∉A

(Ⅰ)求a的值
(Ⅱ)求函數(shù)f(x)=|x+a|+|x-2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:
①函數(shù)f(x)的定義域是[0,+∞);
②函數(shù)f(x)的值域是[-2,4);
③函數(shù)f(x)在[0,+∞)上是增函數(shù),分別探究下列小題:
(1)判斷函數(shù)f1(x)=
x
-2(x≥0)及f2(x)=4-6•(
1
2
x(x≥0)是否屬于集合A?并簡(jiǎn)要說明理由;
(2)對(duì)于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對(duì)于任意的x≥0恒成立?若不成立,為什么?若成立,請(qǐng)說明你的結(jié)論.
(3)g(x)=x+2a f1(x)求g(x)的最小值用a表示.

查看答案和解析>>

同步練習(xí)冊(cè)答案