【題目】已知函數(shù)f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期為.
(1)求ω的值;
(2)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時(shí)f(A)的值域.
【答案】見解析
【解析】解 (1)f(x)=sin2ωx- (cos2ωx+1)=sin(2ωx-)-,因?yàn)楹瘮?shù)f(x)的周期為T==,所以ω=.
(2)由(1)知f(x)=sin(3x-)-,
易得f(A)=sin(3A-)-.
因?yàn)閟inB,sinA,sinC成等比數(shù)列,
所以sin2A=sinBsinC,
所以a2=bc,
所以cosA==≥= (當(dāng)且僅當(dāng)b=c時(shí)取等號),
因?yàn)?<A<π,
所以0<A≤,
所以-<3A-≤,
所以-<sin(3A-)≤1,
所以-1<sin(3A-)-≤,
所以函數(shù)f(A)的值域?yàn)?-1,].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若f(1)=0,求函數(shù)f(x)的最大值;
(Ⅱ)令,討論函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)若a=2,正實(shí)數(shù)x1,x2滿足證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為,以原點(diǎn)O為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+=0相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A、B兩點(diǎn),且kOAkOB=﹣,判斷△AOB的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(1)求證: 平面;
(2)點(diǎn)在線段上運(yùn)動,設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義域?yàn)?/span>的奇函數(shù),且.
(1)求的解析式;
(2)證明在區(qū)間上是增函數(shù);
(3)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面平面,底面為梯
形, , , .且與均為正三角形, 為的中點(diǎn),
為重心.
(1)求證: 平面;
(2)求異面直線與的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,已知點(diǎn)D在BC邊上,滿足AD⊥AC,cos ∠BAC=-,AB=3,BD=.
(1)求AD的長;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下列命題:
①函數(shù)的圖象關(guān)于軸對稱;
②在區(qū)間上,函數(shù)是減函數(shù);
③在區(qū)間上,函數(shù)是增函數(shù);
④函數(shù)的值域是 .其中正確命題序號為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com