精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,以原點為極點,x軸為極軸建立極坐標系,曲線C1的方程為 (θ為參數),曲線C2的極坐標方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點.
(1)求|AB|的值;
(2)求點M(﹣1,2)到A、B兩點的距離之積.

【答案】
(1)解:曲線C1的方程為 =1,C2:ρcosθ+ρsinθ=1,

則C2的普通方程為x+y﹣1=0,

則C2的參數方程為 ,

代入C1得2t2+7 t+10=0,

∴|AB|=|t1﹣t2|= =


(2)解:|MA||MB|=|t1t2|=5
【解析】(1)先求出C1的普通方程和C2的參數方程,再根據韋達定理和弦長公式即可求出,(2)直接由(1)即可求出答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】類似于十進制中的逢10進1,十二進制的進位原則是逢12進1,采用數字0,1,2,…,9和字母M,N作為計數符號,這些符號與十進制的數字對應關系如下表:

十二進制

0

1

2

3

4

5

6

7

8

9

M

N

十進制

0

1

2

3

4

5

6

7

8

9

10

11

例如,因為563=3×122+10×12+11,所以十進制中的563在十二進制中被表示為3MN(12).那么十進制中的2008在十二進制中被表示為(  )

A. 11N4(12) B. 1N25(12) C. 12N4(12) D. 1N24(12)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓M,直線lA為直線l上一點.

,過A作圓M的兩條切線,切點分別為P,Q,求的大;

若圓M上存在兩點B,C,使得,求點A橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知cos(α﹣β)=﹣ ,cos(α+β)= ,且(α﹣β)∈( ,π),(α+β)∈( ,2π),則cos2α=(
A.﹣1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sin2x+ sin2x.
(1)求函數f(x)的單調遞減區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f( )= ,△ABC的面積為3 ,求a的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關系,現在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數,得到如下資料:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數y/顆

23

25

30

26

16

(Ⅰ)從這5天中任選2天,記發(fā)芽的種子數分別為m,n,求事件“m,n均不小于25”的概率.
(Ⅱ)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數據,請根據這5天中的另3天的數據,求出y關于x的線性回歸方程 = x+
(參考公式: = , =

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函f(x)=ax2﹣ex(a∈R). (Ⅰ)a=1時,試判斷f(x)的單調性并給予證明;
(Ⅱ)若f(x)有兩個極值點x1 , x2(x1<x2).
(i) 求實數a的取值范圍;
(ii)證明:﹣ . (注:e是自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數方程為為參數, ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),直線的參數方程為為參數),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2) 已知點的極坐標為,求的值

查看答案和解析>>

同步練習冊答案