過橢圓
(
)的左焦點
作
軸的垂線交橢圓于點
,
為右焦點,若
,則橢圓的離心率為( )
此題考查橢圓的性質(zhì)的應用、離心率的求法;由已 知可得出:
,在
中,
,選B
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓C:
+
=1
的左.右焦點為
,離心率為
,直線
與x軸、y軸分別交于點
,
是直線
與橢圓C的一個公共點,
是點
關(guān)于直線
的對稱點,設
=
(Ⅰ)證明:
; (Ⅱ)確定
的值,使得
是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
分別是橢圓:
(
)的左、右焦點,過
斜率為1的直線
與該橢圓相交于P,Q兩點,且
,
,
成等差數(shù)列.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設點M(0,-1)滿足|MP|=|MQ|,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在坐標原點,焦點在
軸上,離心率為
,橢圓的短軸端點和焦點所組成的四邊形周長等于8。
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點
的直線
與橢圓
相交于
兩點(
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
等軸雙曲線
C與橢圓
有公共的焦點,則雙曲線
C的方程為____________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的左右焦點是F
1,F(xiàn)
2,設P是雙曲線右支上一點,
在
上的投影的大小恰好為|
|,且它們的夾角為
,則雙曲線的離心率e為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在橢圓
中,
為橢圓上的一點,過坐標原點
的直線交橢圓于
兩點,其中
在第一象限,過
作
軸的垂線,垂足為
,連接
,
(1)若直線
與
的斜率均存在,問它們的斜率之積是否為定值,若是,求出這個定值,若不是,說明理由;
(2)若
為
的延長線與橢圓的交點,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知點A(4,4),若拋物線y
2=2px的焦點與橢圓
=1的右焦點重合,該拋物線上有一點M,它在y軸上的射影為N,則|MA|+|MN|的最小值為___________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
的一個焦點坐標為(0,1),則實數(shù)
的值等于_____
____,
查看答案和解析>>