數(shù)列{an},{bn}滿足a11,a2r(r0)bnanan1,且{bn}是公比為q(q0)的等比數(shù)列,設(shè)cna2n1a2n(nN*)

(1){cn}的通項(xiàng)公式;

(2)設(shè),r21921,q,求數(shù)列{dn}的最大項(xiàng)和最小項(xiàng)的值.

 

答案:
解析:

解:(1)∵{bn}為等比數(shù)列,公比為q

q.即q

從而q(nN*)

因此,數(shù)列a1,a3a5,…,a2n1和數(shù)列a2a4a6,…,a2n都為等比數(shù)列,且公比都是q

a2n1a1qn1qn1a2na2qn1r·qn1

cna2n1a2nqn1r·qn1(1r)qn1(nN*)

(2)此時(shí),cn(121921)()n12202n,

,

1 (nN*)

從上式可知,當(dāng)n2020,即n21(nN*)時(shí),dnn增大而減小,

故有11225

當(dāng)n2020,即n20(nN*)時(shí),dn也隨n的增大而減小,故有

11=-4

綜合(1)、(2)兩式知,對任意nN*,有d20dnd21

{dn}的最大項(xiàng)d21225,最小項(xiàng)d20=-4

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,其前n項(xiàng)和為Sn,滿足Sn=2an-1,n∈N*,數(shù)列{bn}滿足bn=1-log
12
an,n∈N*

(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{anbn}的n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合W由滿足下列兩個(gè)條件的數(shù)列{an}構(gòu)成:①
an+an+2
2
an+1
;②存在實(shí)數(shù)M,使an≤M.(n為正整數(shù))
(Ⅰ)在只有5項(xiàng)的有限數(shù)列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;試判斷數(shù)列{an}、{bn}是否為集合W中的元素;
(Ⅱ)設(shè){cn}是各項(xiàng)為正數(shù)的等比數(shù)列,Sn是其前n項(xiàng)和,c3=
1
4
S3=
7
4
,試證明{Sn}∈W,并寫出M的取值范圍;
(Ⅲ)設(shè)數(shù)列{dn}∈W,對于滿足條件的M的最小值M0,都有dn≠M(fèi)0(n∈N*).求證:數(shù)列{dn}單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}、{bn}滿足anbn=1,an=n2+n,則數(shù)列{bn}的前10項(xiàng)和為
10
11
10
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an},{bn}中,對任何正整數(shù)n都有:a1b1+a2b2+a3b3+…+an-1bn-1+anbn=(n-1)•2n+1
(1)若數(shù)列{bn}是首項(xiàng)為1和公比為2的等比數(shù)列,求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{an}是首項(xiàng)為a1,公差為d等差數(shù)列(a1•d≠0),求數(shù)列{bn}的通項(xiàng)公式;
(3)在(2)的條件下,判斷數(shù)列{bn}是否為等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•肇慶二模)已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}是等比數(shù)列,b1=1,且b2S2=64,b3S3=960.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4
對一切n∈N*
都成立.

查看答案和解析>>

同步練習(xí)冊答案