已知數(shù)列{a
n}中,其前n項(xiàng)和為S
n,滿足S
n=2a
n-1,n∈N*,數(shù)列{b
n}滿足
bn=1-logan,n∈N*(1)求數(shù)列{a
n}、{b
n}的通項(xiàng)公式;
(2)設(shè)數(shù)列{a
nb
n}的n項(xiàng)和為T
n,求T
n.
分析:(1)由題設(shè)條件先求出a
n=2a
n-1,從而得到a
n=2
n-1,再由
bn=1-log2n-1=1-(1-n)=n求出數(shù)列{b
n}的通項(xiàng)公式.
(2)因?yàn)閧a
nb
n}=n•2
n-1,所以由錯位相減法可知數(shù)列{a
nb
n}的n項(xiàng)和為T
n.
解答:(1)解:當(dāng)n=1時,a
1=S
1=2a
1-1,a
1=1
當(dāng)n≥2時,a
n=S
n-S
n-1=(2a
n-1)-(2a
n-1-1),∴a
n=2a
n-1∴數(shù)列{a
n}是首項(xiàng)為a
1=1,公比為2的等比數(shù)列,
∴數(shù)列{a
n}的通項(xiàng)公式是a
n=2
n-1(2分)
bn=1-log2n-1=1-(1-n)=n,∴數(shù)列{b
n}的通項(xiàng)公式是b
n=n
(2{a
nb
n}=n•2
n-1∴T
n=1×2
0+2×2
1+3×2
2++(n-1)•2
n-2+n•2
n-12T
n=1×2
1+2×2
2+…+(n-1)•2
n-1+n•2
n∴-T
n=1+2
1+2
2+…+2
n-1-n•2
n=2
n-1-n•2
n•
∴T
n=(n-1)•2
n+1.
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法和數(shù)列的求和,解題時要注意錯位相減求和法的熟練運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}中,
a1=1,an+1-an=(n∈N*),則
an=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}中,a
1=1,a
n+1=
,則{a
n}的通項(xiàng)公式a
n=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}中,a
1=1,
a1+2a2+3a3+…+nan=an+1(n∈N*).
(1)求數(shù)列{a
n}的通項(xiàng)公式;
(2)求數(shù)列
{}的前n項(xiàng)和T
n.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列
{an}中,a1=,Sn為數(shù)列的前n項(xiàng)和,且S
n與
的一個等比中項(xiàng)為n(n∈N*),則
Sn=
1
1
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為( 。
查看答案和解析>>