若實數(shù)x、y滿足
2x+y>2
2y-x≤4
4x-3y≤4
,則2x-3y的最值情況是( 。
A、最大值為2,最小值為-4
B、最大值為2,無最小值
C、無最大值,最小值為-4
D、既無最大值,又無最小值
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可.
解答: 解:設(shè)z=2x-3y得y=
2
3
x-
z
3
,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=
2
3
x-
z
3
,由圖象可知當(dāng)直線y=
2
3
x-
z
3
,過點A(0,2)時,直線y=
2
3
x-
z
3
截距最大,此時z最小,
z=-6,
當(dāng)直線y=
2
3
x-
z
3
,過點B(1,0)時,直線y=
2
3
x-
z
3
截距最小,此時z最大,
z=2,
即-6<z<2.
∴目標(biāo)函數(shù)z=2x-3y既無最大值,又無最小值.
故選D.
點評:本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,
AE
=
EB
CF
=2
FB
,連接CE、DF相交于點M,若
AM
AB
AD
,則λ與μ的乘積
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(0<φ<π),f(x)圖象的一條對稱軸是x=
π
8
,則φ的值為(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)
a
1-i
+
1-i
2
(i為虛數(shù)單位)的實部與虛部互為相反數(shù),則實數(shù)a的值為( 。
A、2B、1C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的容積為
80
3
π立方米,且l≥2r.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為22千元.設(shè)該容器的建造費(fèi)用為y千元.當(dāng)該容器建造費(fèi)用最小時,r的值為( 。
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(a,b)是區(qū)域
2x+y-4≤0
x>0
y>0
內(nèi)的隨機(jī)點,函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上是增函數(shù)的概率為(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+
1
2
)為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
1
2015
)+g(
2
2015
)+g(
3
2015
)+g(
4
2015
)+…+g(
2014
2015
)=( 。
A、1007B、2014
C、2015D、4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,則cos2α-cos2α的值為( 。
A、
9
25
B、
18
25
C、
23
25
D、
34
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表達(dá)式;
(Ⅱ)若f(x)≥ag(x)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)設(shè)n∈N+,比較g(1)+g(2)+…+g(n)與n-f(n)的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案