分析 (Ⅰ)通過{an-1}是等比數(shù)列且a1-1=2、a2-1=4可知其公比為2,進(jìn)而得出結(jié)論;
(Ⅱ)通過bn=n•2n+n可得Tn=(2+2×22+3×23+…+n•2n)+(1+2+3+…+n),令T=2+2×22+3×23+…+n•2n,利用錯(cuò)位相減法可求出T,再計(jì)算1+2+3+…+n,
計(jì)算即可.
解答 解:(Ⅰ)∵{an-1}是等比數(shù)列且a1-1=2,a2-1=4,
∴$\frac{{a}_{2}-1}{{a}_{1}-1}$=2,∴an-1=2•2n-1=2n,∴an=2n+1;
(Ⅱ)∵bn=nan=n•2n+n,
∴Tn=b1+b2+b3+…+bn=(2+2×22+3×23+…+n•2n)+(1+2+3+…+n),
令T=2+2×22+3×23+…+n•2n,
則2T=22+2×23+3×24+…+n•2n+1,
兩式相減,得-T=2+22+23+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1,
∴T=2(1-2n)+n•2n+1=2+(n-1)•2n+1,
∵1+2+3+…+n=$\frac{n(n+1)}{2}$,
∴Tn=(n-1)•2n+1+$\frac{{n}^{2}+n+4}{2}$.
點(diǎn)評(píng) 本題考查求數(shù)列的通項(xiàng)、前n項(xiàng)和,利用錯(cuò)位相減法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | R | C. | ∅ | D. | [1,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com