【題目】已知橢圓和雙曲線焦點F1 , F2相同,且離心率互為倒數,P是橢圓和雙曲線在第一象限的交點,當∠F1PF2=60°時,橢圓的離心率為( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】下列四種說法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知 ,則∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,則A=
④若a>0,b>0,a+b=2,則a2+b2≥2;
正確的序號有 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F、G分別是AC、BC中點.
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E、F為CD上兩點,且EF的長為定值,則下面四個值中不是定值的是( )
A.點P到平面QEF的距離
B.直線PQ與平面PEF所成的角
C.三棱錐P﹣QEF的體積
D.△QEF的面積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直角坐標系x′Oy所在的平面為β,直角坐標系xOy所在的平面為α,且二面角α﹣y軸﹣β的大小等于30°.已知β內的曲線C′的方程是3(x﹣2 )2+4y2﹣36=0,則曲線C′在α內的射影在坐標系xOy下的曲線方程是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,點F1(﹣1,0),F2(1,0),動點M到點F2的距離是 ,線段MF1的中垂線交MF2于點P.
(1)當點M變化時,求動點P的軌跡G的方程;
(2)設直線l:y=kx+m與軌跡G交于M、N兩點,直線F2M與F2N的傾斜角分別為α、β,且α+β=π,求證:直線l經過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義函數序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn﹣1(x)),則函數y=f2017(x)的圖象與曲線 的交點坐標為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)對任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數f(x)的導函數),則下列不等式成立的是( )
A. f(﹣ )<f(﹣ )
B. f( )<f( )
C.f(0)>2f( )
D.f(0)> f( )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com