(2007•閘北區(qū)一模)已知函數(shù)f(x)=ax+b,當(dāng)x∈[a1,b1]時f(x)的值域為[a2,b2],當(dāng)x∈[a2,b2]時f(x)的值域為[a3,b3],…依此類推,一般地,當(dāng)x∈[an-1,bn-1]時f(x)的值域為[an,bn],其中a、b為常數(shù)且a1=0,b1=1
(1)若a=1,求數(shù)列{an},{bn}的通項公式.
(2)若a>0且a≠1,要使數(shù)列{bn}是公比不為1的等比數(shù)列,求b的值.
(3)若a<0,設(shè)數(shù)列{an},{bn}的前n項和分別為Sn,Tn,求(T1+T2+…+T2000)-(S1+S2+…+S2000)的值.
分析:(1)a=1時,f(x)=x+b在R上是增函數(shù),由題意知,an=f(an-1)=an-1+b,bn=f(bn-1)=bn-1+b,從而可判斷{an}、{bn}都是公差為b的等差數(shù)列.根據(jù)等差、等比數(shù)列的通項公式及a1=0,b1=1可得兩數(shù)列的通項公式;
(2)易知f(x)=ax+b在R上也是增函數(shù),由已知有bn=f(bn-1)=abn-1+b(n≥2),可變形為:
bn
bn-1
=a+
b
bn-1
,若有{bn}是公比不為1的等比數(shù)列,則
b
bn-1
是常數(shù),由此可得b值;
(3)易知f(x)=ax+b在R上是減函數(shù),由已知可得,bn=f(an-1)=a•an-1+b,an=f(bn-1)=a•bn-1+b,則bn-an=-a(bn-1-an-1)(n≥2),易知,{bn-an}是以1為首項,-a為公比的等比數(shù)列,
可得bn-an,從而可求Tn-Sn,則可求得,(T1+T2+…+T2000)-(S1+S2+…+S2000)=(T1-S1)+(T2-S2)+…+(T2000-S2000)的值;
解答:解:(1)a=1時,f(x)=x+b在R上是增函數(shù),
由已知,當(dāng)n≥2時,x∈[an-1,bn-1],f(x)的值域是[an,bn],
∴an=f(an-1)=an-1+b,bn=f(bn-1)=bn-1+b,
∴{an}、{bn}都是公差為b的等差數(shù)列.
∵a1=0,b1=1,
∴an=(n-1)b,bn=(n-1)b+1;
(2)∵a>0,a≠1,
∴f(x)=ax+b在R上也是增函數(shù),
由已知有bn=f(bn-1)=abn-1+b,即bn=abn-1+b(n≥2),
bn
bn-1
=a+
b
bn-1
,
若{bn}是公比不為1的等比數(shù)列,則
b
bn-1
是常數(shù),所以b=0;
(3)∵a<0,∴f(x)=ax+b在R上是減函數(shù),
由已知可得,bn=f(an-1)=a•an-1+b,an=f(bn-1)=a•bn-1+b,
∴bn-an=-a(bn-1-an-1)(n≥2),
∴{bn-an}是以1為首項,-a為公比的等比數(shù)列,
∴bn-an=(-a)n-1
∴Tn-Sn=(b1-a1)+(b2-a2)+…+(bn-an)=
n,a=-1
1-(-a)n
1+a
,a≠-1
,
于是,(T1+T2+…+T2000)-(S1+S2+…+S2000
=(T1-S1)+(T2-S2)+…+(T2000-S2000
=
2001000,a=-1
2000+2001a-a2001
(1+a)2
,a<0,a≠-1
點評:本題考查等差等比數(shù)列的通項公式、數(shù)列求和等知識,考查學(xué)生綜合運(yùn)用知識分析解決問題的能力,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•閘北區(qū)一模)若關(guān)于x的不等式kx+3>2x-k的解集是(-∞,4),則實數(shù)k=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•閘北區(qū)一模)雙曲線
(y+2)23
-x2=1
的兩個焦點坐標(biāo)是
(0,0)和(0,-4)
(0,0)和(0,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•閘北區(qū)一模)如果過拋物線y=x2+x上的點P做切線平行于直線y=2x的切線,那么這切線方程是
8x-4y-1=0
8x-4y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•閘北區(qū)一模)若三男二女排成一排照相,則二女恰好排在一起的概率是
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•閘北區(qū)一模)直線2kx-(k2+1)y+1=0(k∈R)的傾角α的范圍是
[0,
π
4
]∪[
4
,π)
[0,
π
4
]∪[
4
,π)

查看答案和解析>>

同步練習(xí)冊答案