已知平面內(nèi)一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1.
(1)求動點P的軌跡C的方程.
(2)過點F作兩條斜率存在且互相垂直的直線l1、l2,設(shè)l1與軌跡C交于A、B兩點,l2與軌跡C交于D、E兩點,求|FA|•|FB|+|FC|•|FD|的最小值.
【答案】分析:(1)根據(jù)平面內(nèi)一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1,可得當(dāng)x≥0時,點P到F的距離等于點P到直線x=-1的距離,所以動點P的軌跡為拋物線;當(dāng)x<0時,y=0也滿足題意;
(2)設(shè)l1的方程為y=k(x-1)與拋物線方程聯(lián)立,設(shè)A(x1,y1),B(x2,y2),利用韋達定理可得x1+x2=2+,x1x2=1,x3+x4=2+4k2,x3x4=1,從而可得|FA||FB|+|FD||FE|=8+4(k2+)≥16,由此即可得到結(jié)論.
解答:解:(1)∵平面內(nèi)一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1
∴當(dāng)x≥0時,點P到F的距離等于點P到直線x=-1的距離,
∴動點P的軌跡為拋物線,方程為y2=4x(x≥0)
當(dāng)x<0時,y=0
∴動點P的軌跡C的方程為y2=4x(x≥0)或y=0(x<0)
(2)由題意知,直線l1的斜率存在且不為0,設(shè)為k,則l1的方程為y=k(x-1)
與拋物線方程聯(lián)立,消元可得k2x2-(2k2+4)x+k2=0
設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個實根,所以x1+x2=2+,x1x2=1
∵l1⊥l2,∴l(xiāng)2的斜率為
設(shè)D(x3,y3),E(x4,y4),則同理可得x3+x4=2+4k2,x3x4=1
∴|FA||FB|+|FD||FE|=(x1+1)(x2+1)+(x3+1)(x4+1)=8+4(k2+)≥16(當(dāng)且僅當(dāng)k=±1時取等號)
∴|FA|•|FB|+|FC|•|FD|的最小值為16.
點評:本題考查軌跡方程,考查直線與拋物線的位置關(guān)系,解題的關(guān)鍵是確定拋物線的方程,利用韋達定理解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動點P到F(1,0)的距離比點P到y(tǒng)軸的距離大1.
(1)求動點P的軌跡C的方程;
(2)過點F的直線交軌跡C于A,B兩點,交直線x=-1于M點,且
MA
=λ1
AF
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動點P到定點F(2,0)的距離與點P到y(tǒng)軸的距離的差等于2.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F作傾斜角為60°的直線l與軌跡C交于A(x1,y1),B(x2,y2)(x1<x2)兩點,O為坐標原點,點M為軌跡C上一點,若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭二模)已知平面內(nèi)一動點 P到定點F(0,
1
2
)
的距離等于它到定直線y=-
1
2
的距離,又已知點 O(0,0),M(0,1).
(1)求動點 P的軌跡C的方程;
(2)當(dāng)點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,以 M P為直徑作圓,求該圓截直線y=
1
2
所得的弦長;
(3)當(dāng)點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,過點 P作x軸的垂線交x軸于點 A,過點 P作(1)中的軌跡C的切線l交x軸于點 B,問:是否總有 P B平分∠A PF?如果有,請給予證明;如果沒有,請舉出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知平面內(nèi)一動點P到F(1,0)的距離比點P到軸的距離少1.

(1)求動點P的軌跡C的方程;

(2)過點F的直線交軌跡C于A,B兩點,交直線點,且

,,

的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面內(nèi)一動點P到F(1,0)的距離比點P到y(tǒng)軸的距離大1.
(1)求動點P的軌跡C的方程;
(2)過點F的直線交軌跡C于A,B兩點,交直線x=-1于M點,且
MA
=λ1
AF
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步練習(xí)冊答案