如圖,三棱錐D-ABC中,E、F、G分別是AB、BC、CD的中點,共有
 
對線面平行.
考點:直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:由三棱錐D-ABC中,E、F、G分別是AB、BC、CD的中點,得GF∥BD,F(xiàn)E∥AC,GE∥AD,由此能求出共在3對線面平行.
解答: 解:∵三棱錐D-ABC中,E、F、G分別是AB、BC、CD的中點,
∴GF∥BD,F(xiàn)E∥AC,
又GF不包含于平面ABD,BD?平面ABD,∴GF∥平面ABD,
EF不包含于平面ADC,AC?平面ABD,∴EF∥平面ADC,
∴共在2對線面平行.
故答案為:2.
點評:本題考查三棱錐中線面平行的對數(shù)的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

150°
 
弧度
三角函數(shù)y=sinx的最大值=
 

三角函數(shù)y=cosx的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在一條河流的上、下游分別有甲、乙兩家化工廠,其中甲廠每天向河道內(nèi)排放污水2萬m3,每天流過甲廠的河水流量是500萬m3(含甲廠排放的污水);乙廠每天向河道內(nèi)排放污水1.4萬m3,每天流過乙廠的河水流量是700萬m3(含乙廠排放的污水).由于兩廠之間有一條支流的作用,使得甲廠排放的污水在流到乙廠時,有20%可自然凈化.假設(shè)工廠排放的污水能迅速與河水混合,且甲廠上游及支流均無污水排放.
(1)求河流在經(jīng)過乙廠后污水含量的百分比約是多少?(精確到0.01%)
(2)根據(jù)環(huán)保要求,整個河流中污水含量不能超過0.2%,為此,甲、乙兩家工廠都必須各自處理一部分污水.已知甲廠處理污水的成本是1000元/萬m3,乙廠處理污水的成本是800元/萬m3,求甲、乙兩廠每天分別處理多少萬m3污水,才能使兩廠處理污水的總費用最少?最小總費用是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-x(e為自然對數(shù)的底數(shù)).
(1)求f(x)的最小值;
(2)若不等式f(x)>ax的解集為P,若M={x|
1
2
≤x≤
3
2
},且M∩P≠φ,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
a
x
(x≠0,常數(shù)a∈R).
(1)當a=1時,解不等式f(x)>
2
x

(2)討論函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在橢圓
x2
a2
+
y2
8
=1(a>0)中,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,B、D分別為橢圓的左、右頂點,A為橢圓在第一象限內(nèi)的任意一點,直線AF1交橢圓于另一點C,交y軸于點E,且點F1、F2三等分線段BD.
(Ⅰ)求a的值;
(Ⅱ)若四邊形EBCF2為平行四邊形,求點C的坐標;
(Ⅲ)當S△AF1O=S△CEO時,求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[0,10]中任意取一個數(shù),則它與4之和大于10的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某發(fā)電廠在節(jié)能減排的科研活動中,對熱能與電能的轉(zhuǎn)化和燃煤每分鐘的添加量之間的關(guān)系進行科學(xué)研究,對該廠A號機組的跟蹤調(diào)研中發(fā)現(xiàn),若該機組每分鐘燃煤的添加量設(shè)計標準為a噸,在正常狀態(tài)下,通過自動傳輸帶給該機組每分鐘添加燃煤x噸,理論上可以生產(chǎn)電能x3-x+10千瓦,而由于實際添加量x與設(shè)計標準a存在誤差,實際上會導(dǎo)致電能損耗2|x-a|千瓦,最終生產(chǎn)的電能為f(x)千瓦.
(1)試寫出f(x)關(guān)于x的函數(shù)表達式,并求出f(x)的單調(diào)增區(qū)間;
(2)該科研小組決定調(diào)整設(shè)計標準a,控制添加量x∈[
1
2
3
2
]
(單位:噸),實現(xiàn)對最終生產(chǎn)的電能f(x)的有效控制的科學(xué)實驗,若某次試驗中a∈[
1
2
,1]
(單位:噸),用電高峰期間,要求該廠的輸出電能為每分鐘不低于9千瓦,否則將供電不正常,試問這次實驗?zāi)芊駥崿F(xiàn)這個目標?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求數(shù)列1+1,
1
a
+4,
1
a2
+7,
1
a3
+10,…,
1
an-1
+(3n-2),…的前n項和.

查看答案和解析>>

同步練習(xí)冊答案