過橢圓+=1(a>b>0)的焦點(diǎn)垂直于x軸的弦長為a,則雙曲線-=1的離心率e的值是( )
(A) (B) (C) (D)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044
如圖,F(xiàn)1,F(xiàn)2分別是橢圓+=1(a>b>0)的左右焦點(diǎn),M為橢圓上一點(diǎn),MF2垂直于x軸,且OM與橢圓長軸和短軸端點(diǎn)的連線AB平行,
(Ⅰ)求橢圓的離心率;
(Ⅱ)若G為橢圓上不同于長軸端點(diǎn)任一點(diǎn),求∠F1GF2取值范圍;
(Ⅲ)過F2且與OM垂直的直線交橢圓于P,Q.若=20,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省重點(diǎn)中學(xué)盟校2012屆高三第一次聯(lián)考數(shù)學(xué)理科試題 題型:044
已知橢圓C:+=1(a>b>0),直線y=x+與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2.
(1)求橢圓C的方程.
(2)若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點(diǎn)A,B且線段AB的垂直平分線過定點(diǎn)C(,0)求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省樂山市高中2012屆高三第二次調(diào)查研究考試數(shù)學(xué)文科試題 題型:044
如圖,已知直線
L:x=my+1過橢圓C:+=1(a>b>0)的右焦點(diǎn)F,且交瓶圓C于A、B兩點(diǎn),點(diǎn)A、F、B在直線G:x=a2上的射影依次為點(diǎn)D、K、E,若拋物線x2=4y的焦點(diǎn)為橢圓C的頂點(diǎn).(1)求橢圓C的方程;
(2)若直線L交y軸于點(diǎn)M,月=λ1,=λ2,當(dāng)M變化時,求λ1+λ2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇南京金陵中學(xué)高三第一學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率e=,橢圓C的上、下頂點(diǎn)分別為A1,A2,左、右頂點(diǎn)分別為B1,B2,左、右焦點(diǎn)分別為F1,F(xiàn)2.原點(diǎn)到直線A2B2的距離為.
(1)求橢圓C的方程;
(2)過原點(diǎn)且斜率為的直線l,與橢圓交于E,F(xiàn)點(diǎn),試判斷∠EF2F是銳角、直角還是鈍角,并寫出理由;
(3)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2,分別交軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N 的圓G相切,切點(diǎn)為T.證明:線段OT的長為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:+=1(a>b>0)的左焦點(diǎn)為F(-1,0),離心率為,過點(diǎn)F的直線l與橢圓C交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)F不與坐標(biāo)軸垂直的直線交橢圓C于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com