在平面直角坐標(biāo)系xOy中,拋物線x2=2py(p>0)上縱坐標(biāo)為1的一點(diǎn)到焦點(diǎn)的距離為3,則焦點(diǎn)到準(zhǔn)線的距離為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=sin2+cos2x-+sin x·cos x,x∈R,求:
(1) 函數(shù)f(x)的最大值及取得最大值時(shí)的x的值;
(2) 函數(shù)f(x)在[0,π]上的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)).
(1) 寫出a1,a2,a3;
(2) 求出點(diǎn)An(an,0)(n∈N+)的橫坐標(biāo)an關(guān)于n的表達(dá)式并用數(shù)學(xué)歸納法證明.
(第5題)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,若直線l:(t為參數(shù))過橢圓C:(φ為參數(shù))的右頂點(diǎn),求常數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C經(jīng)過點(diǎn)A,兩個(gè)焦點(diǎn)分別為(-1,0),(1,0).
(1) 求橢圓C的方程;
(2) E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若將函數(shù)f(x)=x5表示為f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5為實(shí)數(shù),則a3= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:+=1(a>b>0)的上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F2,且橢圓C過點(diǎn)P,以AP為直徑的圓恰好過右焦點(diǎn)F2.
(1) 求橢圓C的方程;
(2) 若動(dòng)直線l與橢圓C有且只有一個(gè)公共點(diǎn),試問:在x軸上是否存在兩定點(diǎn),使其到直線l的距離之積為1?若存在,請(qǐng)求出兩定點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)f(x)為定義在R上的偶函數(shù),當(dāng)0≤x≤2時(shí),y=x;當(dāng)x>2時(shí),y=f(x)的圖象是頂點(diǎn)為P(3,4)且過點(diǎn)A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x)在(-∞,-2)上的解析式;
(2)在圖中的直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;
(3)寫出函數(shù)f(x)的值域和單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com