設F1、F2分別是橢圓的左、右焦點.
(Ⅰ)若P是該橢圓上的一個動點,求PF1•PF2的最大值和最小值;
(Ⅱ)設過定點M(0,2)的直線l與橢圓交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.
【答案】分析:(Ⅰ)根據(jù)題意,求出a,b,c的值,然后設P的坐標,根據(jù)PF1•PF2的表達式,按照一元二次函數(shù)求最值方法求解.
(Ⅱ)設出直線方程,與已知橢圓聯(lián)立方程組,運用設而不求韋達定理求出根的關系,求出k的取值范圍.
解答:解:(Ⅰ)由題意易知
所以
設P(x,y),
=
因為x∈[-2,2],
故當x=0,即點P為橢圓短軸端點時,
有最小值-2
當x=±2,即點P為橢圓長軸端點時,
有最大值1

(Ⅱ)顯然直線x=0不滿足題設條件,
可設直線l:y=kx+2,A(x1,y1),B(x2,y2),
聯(lián)立,消去y,整理得:

得:,


又y1y2=(kx1+2)(kx2+2)
=k2x1x2+2k(x1+x2)+4
==
,
即k2<4∴-2<k<2
故由①、②得:

點評:本題主要考查直線、橢圓、平面向量的數(shù)量積等基礎知識,以及綜合應用數(shù)學知識解決問題及推理計算能力.本題為中檔題,需要熟練運用設而不求韋達定理.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
短軸長為2,P(x0,y0)(x0≠±a)是橢圓上一點,A,B分別是橢圓的左、右頂點,直線PA,PB的斜率之積為-
1
4

(1)求橢圓的方程;
(2)當∠F1PF2為鈍角時,求P點橫坐標的取值范圍;
(3)設F1,F(xiàn)2分別是橢圓的左右焦點,M、N是橢圓右準線l上的兩個點,若
F1M
F2N
=0
,求MN的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年豐臺區(qū)二模)(14分)

設F1、F2分別是橢圓的左、右焦點。

   (I)若M是該橢圓上的一個動點,求的最大值和最小值;

    (II)設過定點(0,2)的直線l與橢圓交于不同兩點A、B,且∠AOB為鈍角(其中O為坐標原點),求直線l的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓的左、右焦點,P為橢圓上任一點,點M的坐標為(6,4),則|PM|+|PF1|的最大值為          .

查看答案和解析>>

科目:高中數(shù)學 來源:2009年上海市南匯區(qū)高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

設F1、F2分別是橢圓的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求的最大值和最小值;
(3)若P是該橢圓上的一個動點,點A(5,0),求線段AP中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省廣州市高三上學期第3次月考理科數(shù)學試卷(解析版) 題型:填空題

設F1、F2分別是橢圓的左、右焦點,P為橢圓上任一點,點M的坐標為(6,4),則|PM|+|PF1|的最大值為                   .

 

查看答案和解析>>

同步練習冊答案