已知(x
x
+
2
3x
)n
的展開式前3項的系數(shù)的和是129.
(1)求這個展開式中x的一次方的系數(shù);
(2)這個展開式中是否含有常數(shù)項?若有,求出該項;若沒有,請說明理由.
分析:(1)利用二項展開式的通項公式求出通項,求出前三項系數(shù),列出方程求出n,令x的指數(shù)為1求出展開式中x的一次方的系數(shù)
(2)令x的指數(shù)為求常數(shù)項.
解答:解:(1)展開式的通項為Tr+1=
C
r
n
(x
x
)n-r(
2
3x
)r=
C
r
n
2rx
9n-11r
6

∴展開式前3項的系數(shù)為1,Cn12=2n,4Cn2
∴1+2n+4Cn2=129解得n=8
9n-11r
6
=1

∴r=6系數(shù)為C8626=1792
故展開式中x的一次方的系數(shù)1792
(2)令
9×8-11r
6
=0

即72=11r無整數(shù)解,
故無常數(shù)項.
點評:本題考查利用二項展開式的通項公式解決二項展開式的特定項問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知(x
x
+
2
3x
)
n
展開式中前3項系數(shù)的和為129,這個展開式中是否含有常數(shù)項和一次項?如果沒有,請說明理由;如有,請求出來.
(2)設(shè)an=1+q+q2+…+qn-1(n∈N*,q≠±1)An=
C
1
n
a1+
C
2
n
a2+…+
C
n
n
an

①用q和n表示An;
②求證:當(dāng)q充分接近于1時,
An
2n
充分接近于
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x
x
+
2
3x
)n
的展開式中,前三項的二項式系數(shù)之和為37.
(1)求x的整數(shù)次冪的項;
(2)分別求出展開式中系數(shù)最大的項和二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知(x
x
+
2
3x
)
n
展開式中前3項系數(shù)的和為129,這個展開式中是否含有常數(shù)項和一次項?如果沒有,請說明理由;如有,請求出來.
(2)設(shè)an=1+q+q2+…+qn-1(n∈N*,q≠±1)An=
C1n
a1+
C2n
a2+…+
Cnn
an

①用q和n表示An;
②求證:當(dāng)q充分接近于1時,
An
2n
充分接近于
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知(x
x
+
2
3x
)n
的展開式前3項的系數(shù)的和是129.
(1)求這個展開式中x的一次方的系數(shù);
(2)這個展開式中是否含有常數(shù)項?若有,求出該項;若沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案