已知在等比數(shù)列{an}中,a1+a3=10,a4+a6=,則等比數(shù)列{an}的公比q的值為   
【答案】分析:先設(shè)公比為q,利用等比數(shù)列的性質(zhì)得a4+a6除以a1+a3正好等于q3,列出關(guān)于q的方程,求出方程的解即可得到q的值.
解答:解:依題意,設(shè)公比為q,
∵a1+a3=10,a4+a6=,
∴q3==,
∴q=
故答案為:
點評:此題考查了等比數(shù)列的性質(zhì),利用了整體代入的思想,熟練掌握等比數(shù)列的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在等比數(shù)列{an}中,a1+a3=10,a4+a6=
5
4
,則等比數(shù)列{an}的公比q的值為( 。
A、
1
4
B、
1
2
C、2
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等比數(shù)列{an}中,a1+a2=2,a4+a5=16,求數(shù)列{an}的通項an與前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等比數(shù)列{an}中,Sn為其前n項和,且a4=2S3+3,a5=2S4+3,則此數(shù)列的公比q為( 。
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等比數(shù)列{an}中,a1•a2•a3=8,a1+a2=3,試求:
(I)a1與公比q;
(Ⅱ)該數(shù)列的前10項的和S10的值(結(jié)果用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•龍泉驛區(qū)模擬)已知在等比數(shù)列{an}中,a1=1,且a2是a1和a3-1的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=2n-1+an(n∈N*),求{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案