已知定點A(4,0)和圓=4上的動點B,P是AB的中點,則P點的軌跡方程是________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城模擬)(本題文科學(xué)生做)如圖,在平面直角坐標(biāo)系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點P、Q.
(Ⅰ)當(dāng)t=3時,求以F1,F(xiàn)2為焦點,且過PQ中點的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點Q作直線QR∥AF1交F1F2于點R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過異于點F1的一個定點?若過,求出該點的坐標(biāo);若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•萊蕪二模)已知定點A(
p2
,0)
(p為常數(shù),p>O),B為x軸負半軸上的一個動點,動點M使得|AM|=|AB|,且線段BM的中點在y軸上.
(I)求動點M的軌跡C的方程;
(Ⅱ)設(shè)EF為曲線C的一條動弦(EF不垂直于x軸),其垂直平分線與x軸交于點T(4,0),當(dāng)p=2時,求|EF|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(4,0)和圓x2+y2=4上的動點B,點PAB之比為    2∶1,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年大綱版高三上學(xué)期單元測試(7)數(shù)學(xué)試卷解析版 題型:解答題

(本小題滿分12分)已知定點A(4,0)和圓x2+y2=4上的動點B,點P分AB之

比為2∶1,求點P的軌跡方程

 

查看答案和解析>>

同步練習(xí)冊答案