設(shè)是各項(xiàng)均不為零的)項(xiàng)等差數(shù)列,且公差.
(1)若,且該數(shù)列前項(xiàng)和最大,求的值;
(2)若,且將此數(shù)列刪去某一項(xiàng)后得到的數(shù)列(按原來的順序)是等比數(shù)列,求的值;
(3)若該數(shù)列中有一項(xiàng)是,則數(shù)列中是否存在不同三項(xiàng)(按原來的順序)為等比數(shù)列?請說明理由.
(1)取最大時的值為30或31;(2)的值為或10

試題分析:(1)由等差數(shù)列前n項(xiàng)和的二次函數(shù)性質(zhì)求解
(2)分類討論思想,依次分刪去第一項(xiàng)、第二項(xiàng)、第三項(xiàng)、第四項(xiàng)后成等比數(shù)列求解;
(3)考慮反證法
試題解析:(1)解法一:由已知得

取最大時的值為30或31.
解法二:由已知得.
取最大,則只需解得.
∴當(dāng)取最大時的值分別是30或31.
(2)當(dāng)時,該數(shù)列的前4項(xiàng)可設(shè)為10、、、.
若刪去第一項(xiàng)10,則由題意得,解得,不符合題意.
若刪去第二項(xiàng),則由題意得解得,符合題意.
若刪去第三項(xiàng),則由題意得解得,符合題意.
若刪去第四項(xiàng),則由題意得解得,不符合題意.
綜上所述,的值為或10.
(3)設(shè)

設(shè)該數(shù)列存在不同的三項(xiàng)成等比數(shù)列,則
,化簡得



代入這與題設(shè)矛盾
故該數(shù)列不存在不同三項(xiàng)(按原來的順序)為等比數(shù)列.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列中,,對任意的,、成等比數(shù)列,公比為;、、成等差數(shù)列,公差為,且
(1)寫出數(shù)列的前四項(xiàng);
(2)設(shè),求數(shù)列的通項(xiàng)公式;
(3)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

中這個數(shù)中取,)個數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個數(shù)記為
(1)當(dāng)時,寫出所有可能的遞增等差數(shù)列及的值;
(2)求
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等比數(shù)列中,已知
(1)求數(shù)列的通項(xiàng)公式;
(2)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),試求數(shù)列的通項(xiàng)公式及前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)記的前項(xiàng)和為,若成等比數(shù)列,求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正實(shí)數(shù)數(shù)列{an}中,a1=1,a2=5,且{}成等差數(shù)列.
(1)證明:數(shù)列{an}中有無窮多項(xiàng)為無理數(shù);
(2)當(dāng)n為何值時,an為整數(shù)?并求出使an<200的所有整數(shù)項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列{an}中,a4=2,a7=-4.現(xiàn)從{an}的前10項(xiàng)中隨機(jī)取數(shù),每次取出一個數(shù),取后放回,連續(xù)抽取3次,假定每次取數(shù)互不影響,那么在這三次取數(shù)中,取出的數(shù)恰好為兩個正數(shù)和一個負(fù)數(shù)的概率為________(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)x,y,z是實(shí)數(shù),9x,12y,15z成等比數(shù)列,且,成等差數(shù)列,則的值是  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列滿足,其前項(xiàng)積為,則=(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案