已知圓M:(x+2+y2=36,定點(diǎn)N(,0),點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足。
(1)求點(diǎn)G的軌跡C的方程;
(2)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)是否存在這樣的直線l,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由。
解:(1)Q為PN的中點(diǎn),且GQ⊥PNGQ為PN的中垂線|PG|=|GN|
|GN|+|GM|=|MP|=6G點(diǎn)的軌跡是以M、N為焦點(diǎn)的橢圓,
且a=3,c=,b=2,
 ∴點(diǎn)G的軌跡方程是;
(2)因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20110923/201109230958582031035.gif">
所以四邊形OASB為平行四邊形
若存在l使得||=||,則四邊形OASB為矩形

若l的斜率不存在,直線l的方程為x=2,由

矛盾,故l的斜率存在
設(shè)l的方程為

 ①

 ②
把①、②代入
∴存在直線使得四邊形形OASB的對(duì)角線相等。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓M:(x+數(shù)學(xué)公式2+y2=數(shù)學(xué)公式的圓心為M,圓N:(x-數(shù)學(xué)公式2+y2=的圓心為N,一動(dòng)圓與圓M內(nèi)切,與圓N外切.
(Ⅰ)求動(dòng)圓圓心P的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點(diǎn)Q,使得∠MQN為鈍角?若存在,求出點(diǎn)Q橫坐標(biāo)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東聊城市東阿縣曹植培訓(xùn)學(xué)校高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(理)已知圓M:(x+2+y2=36,定點(diǎn)N(),點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)G在MP上,且滿足|GP|=|GN|
(1)求點(diǎn)G的軌跡C的方程;
(2)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè),是否存在這樣的直線l,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省廈門市雙十中學(xué)高考考前熱身數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓M:(x+2+y2=的圓心為M,圓N:(x-2+y2=的圓心為N,一動(dòng)圓與圓M內(nèi)切,與圓N外切.
(Ⅰ)求動(dòng)圓圓心P的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點(diǎn)Q,使得∠MQN為鈍角?若存在,求出點(diǎn)Q橫坐標(biāo)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知圓M:(x-2+y2=r2=r2(r>0).若橢圓C:+=1(a>b>0)的右頂點(diǎn)為圓M的圓心,離心率為
(I)求橢圓C的方程;
(II)若存在直線l:y=kx,使得直線l與橢圓C分別交于A,B兩點(diǎn),與圓M分別交于G,H兩點(diǎn),點(diǎn)G在線段AB上,且|AG|=|BH|,求圓M半徑r的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案