已知圓M:(x+2+y2=的圓心為M,圓N:(x-2+y2=的圓心為N,一動圓與圓M內(nèi)切,與圓N外切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點Q,使得∠MQN為鈍角?若存在,求出點Q橫坐標的取值范圍;若不存在,說明理由.
【答案】分析:(I)根據(jù)動圓與圓M內(nèi)切,與圓N外切,得出則,從而有根據(jù)|PM|+|PN|=4>|MN|,橢圓的定義可得P點的軌跡是以M,N為焦點的橢圓,求出a、b的值,即得橢圓的標準方程.
(II)先假設存在一點Q,并設Q(x,y),從而得出,然后與橢圓方程聯(lián)立并化簡得出,即可得出結(jié)果.
解答:解:(Ⅰ)設動圓P的半徑為r,則
兩式相加得|PM|+|PN|=4>|MN|
由橢圓定義知,點P的軌跡是以M、N為焦點,焦距為,實軸長為4的橢圓
其方程為…(6分)
(Ⅱ)假設存在,設Q(x,y).則因為∠MQN為鈍角,所以,,
又因為Q點在橢圓上,所以
聯(lián)立兩式得:化簡得:,
解得:,所以存在.…(13分)
點評:本題考查圓與圓的位置關(guān)系,橢圓的定義和標準方程,得到|PM|+|PN|=4>|MN|是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓M:(x+數(shù)學公式2+y2=數(shù)學公式的圓心為M,圓N:(x-數(shù)學公式2+y2=的圓心為N,一動圓與圓M內(nèi)切,與圓N外切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點Q,使得∠MQN為鈍角?若存在,求出點Q橫坐標的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:0128 模擬題 題型:解答題

已知圓M:(x+2+y2=36,定點N(,0),點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足。
(1)求點G的軌跡C的方程;
(2)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標原點,設是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東聊城市東阿縣曹植培訓學校高三(上)12月月考數(shù)學試卷(解析版) 題型:解答題

(理)已知圓M:(x+2+y2=36,定點N(),點P為圓M上的動點,點G在MP上,且滿足|GP|=|GN|
(1)求點G的軌跡C的方程;
(2)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標原點,設,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年北京市海淀區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知圓M:(x-2+y2=r2=r2(r>0).若橢圓C:+=1(a>b>0)的右頂點為圓M的圓心,離心率為
(I)求橢圓C的方程;
(II)若存在直線l:y=kx,使得直線l與橢圓C分別交于A,B兩點,與圓M分別交于G,H兩點,點G在線段AB上,且|AG|=|BH|,求圓M半徑r的取值范圍.

查看答案和解析>>

同步練習冊答案