【題目】已知直線平面,直線平面,給出下列命題:
①∥; ②;
③∥ ④∥;
其中正確命題的序號是( )
A.①②③ B.②③④ C.①③ D.②④
科目:高中數學 來源: 題型:
【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進行了“本屆奧運會中國隊表現”的滿意度調查(結果只有“滿意”和“不滿意”兩種),從被調查的學生中隨機抽取了50人,具體的調查結果如下表:
(1)在高三年級全體學生中隨機抽取一名學生,由以上統(tǒng)計數據估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調查對象中隨機選取4人進行追蹤調查,記選中的4人中對“本屆奧運會中國隊表現”不滿意的人數為,求隨機變量的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放(且)個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數關系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和,根據經驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.
(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?
(2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數據: 取).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從數列中抽出一項,依原來的順序組成的新叫數列的一個子列.
(1)寫出數列的一個是等比數列的子列;
(2)若是無窮等比數列,首項,公比且,則數列是否存在一個子列,為無窮等差數列?若存在,寫出該子列的通項公式;若不存在,證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的圓錐中,OP是圓錐的高,AB是底面圓的直徑,點C是弧AB的中點,E是線段AC的中點,D是線段PB的中點,且PO=2,OB=1.
(1)試在PB上確定一點F,使得EF∥面COD,并說明理由;
(2)求點到面COD的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程式(是參數).以坐標原點為極點,軸的正半軸為極軸,且取相同的長度單位建立極坐標系,圓的極坐標方程為.
(1)求直線的普通方程與圓的直角坐標方程;
(2)設圓與直線交于、兩點,若點的直角坐標為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從開始計數的.
(Ⅰ)根據頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(Ⅲ)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 2 | 3 | 2 | 7 |
表中的數據顯示,與之間存在線性相關關系,請將(Ⅱ)的結果填入空白欄,并計算關于的回歸方程.
回歸直線的斜率和截距的最小二乘估計公式分別為.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com