【題目】在底面半徑為6的圓柱內(nèi),有兩個(gè)半徑也為6的球面,兩球的球心距為13,若作一個(gè)平面與兩個(gè)球都相切,且與圓柱面相交成一橢圓,則橢圓的長(zhǎng)軸長(zhǎng)為。
【答案】13
【解析】設(shè)兩個(gè)球的球心分別為O1、O2 , 所得橢圓的長(zhǎng)軸為AB,
直線AB與O1O2交于點(diǎn)E,設(shè)它們確定平面α,
作出平面α與兩個(gè)球及圓柱的截面,如圖所示
過(guò)A作O1O2的垂線,交圓柱的母線于點(diǎn)C,設(shè)AB切球O1的大圓于點(diǎn)D,連接O1D
∵Rt△O1DE中,O1E= O1O2= ,O1D=6
∴cos∠DO1E= ,
∵銳角∠DO1E與∠BAC的兩邊對(duì)應(yīng)互相垂直
∴∠BAC=∠DO1E,
得Rt△ABC中,cos∠BAC= ,
∵AC長(zhǎng)等于球O1的直徑,得AC=12
∴橢圓的長(zhǎng)軸AB=13
所以答案是:13
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司研發(fā)出一款新產(chǎn)品,批量生產(chǎn)前先同時(shí)在甲、乙兩城市銷售30天進(jìn)行市場(chǎng)調(diào)查.調(diào)查結(jié)果發(fā)現(xiàn):甲城市的日銷售量 與天數(shù)的對(duì)應(yīng)關(guān)系服從圖①所示的函數(shù)關(guān)系;乙城市的日銷售量與天數(shù)的對(duì)應(yīng)關(guān)系服從圖②所示的函數(shù)關(guān)系;每件產(chǎn)品的銷售利潤(rùn)與天數(shù)的對(duì)應(yīng)關(guān)系服從圖③所示的函數(shù)關(guān)系,圖①是拋物線的一部分.
圖①,圖②,圖③
(1)設(shè)該產(chǎn)品的銷售時(shí)間為,日銷售利潤(rùn)為,求的解析式;
(2)若在30天的銷售中,日銷售利潤(rùn)至少有一天超過(guò)2萬(wàn)元,則可以投入批量生產(chǎn),該產(chǎn)品是否可以投入批量生產(chǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 函數(shù)f(x)=x3+(m﹣4)x2﹣3mx+(n﹣6)x∈R的圖象關(guān)于原點(diǎn)對(duì)稱,其中m,n為實(shí)常數(shù).
(1)求m,n的值;
(2)試用單調(diào)性的定義證明:f(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù);
(3)當(dāng)﹣2≤x≤2 時(shí),不等式f(x)≥(n﹣logma)logma恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】軸截面是邊長(zhǎng)為4 的等邊三角形的圓錐的直觀圖如圖所示,過(guò)底面圓周上任一點(diǎn)作一平面α,且α與底面所成的二面角為 ,已知α與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= +m為奇函數(shù),m為常數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(f(x))+f(ma)<0有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),且對(duì)任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),則實(shí)數(shù)a的取值范圍是( )
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, , , 平面, .設(shè)分別為的中點(diǎn).
(1)求證:平面∥平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈[1,12],x2﹣a≥0.命題q:x0∈R,使得x02+(a﹣1)x0+1<0.若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com