分析 (1)利用再寫一式,兩式相減的方法求數(shù)列{an}的通項公式、利用數(shù)列{bn}滿足bn=log2a1+log2a2+…+log2an,求出{bn}的通項公式;
(2)若${T_n}=\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}$,裂項求和,不等式$k\frac{{n•{a_n}}}{n+1}≥(2n-3){T_n}$恒成立,即k≥$\frac{2n-3}{{4}^{n}}$恒成立,即可實數(shù)k的取值范圍.
解答 解:(1)由3Sn=4an-4可得a1=4,
∵3Sn=4an-4,∴3Sn-1=4an-1-4,∴3Sn-3Sn-1=4an-4-(4an-1-4),
∴3an=4an-4an-1,即$\frac{a_n}{{{a_{n-1}}}}=4$.
∴數(shù)列{an}是首項為a1=4,公比為4的等比數(shù)列,∴${a_n}={4^n}={2^{2n}}$.
又bn=log2a1+log2a2+…+log2an=2+4+…+2(n-1)+2n=n(n+1),
∴bn=n(n+1).
(2)${T_n}=\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
不等式$k\frac{{n•{a_n}}}{n+1}≥(2n-3){T_n}$恒成立,即k≥$\frac{2n-3}{{4}^{n}}$恒成立,
設(shè)dn=$\frac{2n-3}{{4}^{n}}$,則dn+1-dn=$\frac{11-6n}{{4}^{n-1}}$,
∴當(dāng)n≥2時,數(shù)列{dn}單調(diào)遞減,當(dāng)1≤n<2時,數(shù)列{dn}單調(diào)遞增;
即d1<d2>d3>d4>…,
∴數(shù)列最大項為${d_2}=\frac{1}{16}$,∴$k≥\frac{1}{16}$.
點評 本題考查數(shù)列的圖象,考查裂項法求和,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 19 | B. | 27 | C. | 28 | D. | 37 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 16 | C. | 14 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com