已知橢圓E:的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( )
A.
B.
C.
D.
【答案】分析:設(shè)A(x1,y1),B(x2,y2),代入橢圓方程得,利用“點(diǎn)差法”可得.利用中點(diǎn)坐標(biāo)公式可得x1+x2=2,y1+y2=-2,利用斜率計(jì)算公式可得==.于是得到,化為a2=2b2,再利用c=3=,即可解得a2,b2.進(jìn)而得到橢圓的方程.
解答:解:設(shè)A(x1,y1),B(x2,y2),代入橢圓方程得,
相減得,∴
∵x1+x2=2,y1+y2=-2,==
,
化為a2=2b2,又c=3=,解得a2=18,b2=9.
∴橢圓E的方程為
故選D.
點(diǎn)評(píng):熟練掌握“點(diǎn)差法”和中點(diǎn)坐標(biāo)公式、斜率的計(jì)算公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:浙江省模擬題 題型:解答題

已知橢圓E:的右焦點(diǎn)恰好是拋物線C:y2=4x的焦點(diǎn)F,點(diǎn)A是橢圓E的右頂點(diǎn),過點(diǎn)A的直線l交拋物線C于M,N兩點(diǎn),滿足OM⊥ON,其中O是坐標(biāo)原點(diǎn),
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E的左頂點(diǎn)B作y軸平行線BQ,過點(diǎn)N作x軸平行線NQ,直線BQ與NQ相交于點(diǎn)O。若△QMN是以MN為一條腰的等腰三角形,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:的右焦點(diǎn)F,過原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且,最小值為2.

(Ⅰ)求橢圓E的方程;

(Ⅱ)若圓的切線L與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),問OP與OQ是否垂直?若可以,請(qǐng)給出證明;若不可以,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省吉安市西路片七校高三(上)聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓E:的右焦點(diǎn)F,過原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且,|AB|最小值為2.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若圓:的切線l與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),問:OP與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省吉安一中高三(下)第一次段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓E:的右焦點(diǎn)F,過原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且,|AB|最小值為2.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若圓:的切線l與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),問:OP與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年吉林省吉林市高三(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓E:的右焦點(diǎn)F,過原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且,|AB|最小值為2.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若圓:的切線l與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),問:OP與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案