13.設f(x)=$\left\{\begin{array}{l}{x^t},x<2\\ 1o{g_t}({x^2}+7),x≥2\end{array}$,則$f(\sqrt{2})=4$,則f(3)=( 。
A.2B.4C.6D.8

分析 直接利用分段函數(shù),求出t,然后求解函數(shù)的零點即可.

解答 解:f(x)=$\left\{\begin{array}{l}{x^t},x<2\\ 1o{g_t}({x^2}+7),x≥2\end{array}$,$f(\sqrt{2})=4$,
可得${(\sqrt{2})}^{t}=4$,解得t=4,
∴f(3)=log4(9+7)=2.
故選:A.

點評 本題考查分段函數(shù)的應用,函數(shù)值的求法,函數(shù)的零點求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.在平面直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}}\right.(α為參數(shù))$,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=\frac{3}{5}t}\\{y=4+\frac{4}{5}t}\end{array}(t為參數(shù))}\right.$.以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求曲線C的直角坐標方程和直線l的極坐標方程;
(2)若P(x,y)為曲線C上的動點,求點P到直線l的距離d的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某市一所高中隨機抽取部分高一學生調查其上學路上所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學路上所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].

(Ⅰ)求直方圖中x的值;     
(Ⅱ)如果上學路上所需時間不少于1小時的學生可申請在學校住宿,若招生1200名,請估計新生中有多少名學生可以申請住宿;     
(Ⅲ)從學校的高一學生中任選4名學生,這4名學生中上學路上所需時間少于20分鐘的人數(shù)記為X,求X的分布列和數(shù)學期望.(以直方圖中的頻率作為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知a∈R,函數(shù)f(x)=x2-a|x-1|.
(Ⅰ)當a=1時,求函數(shù)f(x)的最小值;
(Ⅱ)討論y=f(x)的圖象與y=|x-a|的圖象的公共點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.執(zhí)行如圖所示的程序框圖,如果輸入的t∈[-2,2],則輸出的S的取值范圍是[-3,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3-x2+a是[0,a]上的“雙中值函數(shù)”,則實數(shù)a的取值范圍是( 。
A.$(\frac{1}{3},\frac{1}{2})$B.($\frac{3}{2},3$)C.($\frac{1}{2}$,1)D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在平面直角坐標系xOy中,直線l的方程為$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù)),以原點O為極點,Ox軸為極軸,取相同的單位長度,建立極坐標系,曲線犆的方程為ρ=4cosθ.
(1)求直線l的普通方程與曲線C的直角坐標方程;
(2)設點A(2+2cosα,2sinα),$B(5\sqrt{2}+\frac{{\sqrt{2}}}{2}t,2-\frac{{\sqrt{2}}}{2}t)$,求|AB|的最小值.(其中α?t為參數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若1<a<4,1<b<2,則$\frac{a}$的取值范圍為(  )
A.(1,2)B.($\frac{1}{2}$,2)C.(2,4)D.($\frac{1}{2}$,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=log2(x2+2),$x∈[{-\sqrt{2},\;\sqrt{6}}]$的值域為( 。
A.[2,3]B.[1,3]C.[4,8]D.[2,8]

查看答案和解析>>

同步練習冊答案