四棱錐中,⊥底面,,,.

(Ⅰ)求證:⊥平面;
(Ⅱ)若側(cè)棱上的點(diǎn)滿足,求三棱錐的體積.
(Ⅰ)見解析;(Ⅱ).

試題分析:(Ⅰ)通過在平面PAC內(nèi)證明PA和AC均與BD垂直,由線面垂直的判定定理得出結(jié)論;(Ⅱ)由割補(bǔ)法知,故先求.處理的關(guān)鍵是利用圖形分割.
試題解析:(Ⅰ)證明:因?yàn)锽C=CD,即為等腰三角形,又,故.
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824022933115394.png" style="vertical-align:middle;" />底面,所以,從而與平面內(nèi)兩條相交直線都垂直,
⊥平面.
(Ⅱ)解:.
底面.
得三棱錐的高為,
故:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱的底面是邊長為的正三角形,側(cè)棱垂直于底面,側(cè)棱長為,D為棱的中點(diǎn)。

(Ⅰ)求證:平面;
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在圓錐PO中, PO=,?O的直徑AB=2, C為弧AB的中點(diǎn),D為AC的中點(diǎn).

(1)求證:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)M是A1B的中點(diǎn),點(diǎn)N是B1C的中點(diǎn),連接MN

(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,底面的中點(diǎn),已知,

求:(Ⅰ)三角形的面積;(II)三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面(  ).
A.若m∥α,n∥α,則m∥n
B.若m∥α,m∥β,則α∥β
C.若m∥n,m⊥α,則n⊥α
D.若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正四棱柱的外接球直徑為,底面邊長,則側(cè)棱與平面所成角的正切值為_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于異面直線的定義,下列說法中正確的是(    )
A.平面內(nèi)的一條直線和這平面外的一條直線
B.分別在不同平面內(nèi)的兩條直線
C.不在同一個(gè)平面內(nèi)的兩條直線
D.不同在任何一個(gè)平面內(nèi)的兩條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正四棱柱中,分別是的中點(diǎn),的中點(diǎn),點(diǎn)在四邊形上或其內(nèi)部運(yùn)動(dòng),且使,對(duì)于下列命題:①點(diǎn)可以與點(diǎn)重合;②點(diǎn)可以與點(diǎn)重合;③點(diǎn)可以在線段上;④點(diǎn)可以與點(diǎn)重合.
其中正確命題的序號(hào)是            (把你認(rèn)為正確命題的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案