【題目】2019年北京世園會(huì)的吉祥物“小萌芽、小萌花”,是一對(duì)代表著生命與希望、勤勞與美好、活潑可愛(ài)的園藝小兄妹,造型創(chuàng)意來(lái)自東方文化中百子圖的“吉祥娃娃”,通過(guò)頭飾、道具、服裝創(chuàng)意的巧妙組合,被賦予了普及園藝知識(shí)、傳播綠色理念的特殊使命.現(xiàn)將三張分別印有“小萌芽”、“小萌花”、“牡丹花”這三個(gè)圖案的卡片(卡片的形狀和大小相同,質(zhì)地也相同)放入盒子中.若從盒子中依次有放回的取出兩張卡片,則一張為小萌芽,一張為小萌花的概率是(

A.B.C.D.

【答案】C

【解析】

將卡片分別為、、,根據(jù)抽取方法列出基本事件個(gè)數(shù),然后再利用古典概型的概率計(jì)算公式即可求解.

記印有“小萌芽”、“小萌花”、“牡丹花”圖案的卡片分別為、,

則基本事件分別為,,,,

,,,共9種情況.

其中一張為小萌芽,一張為小萌花是2種情況,

所以所求的概率為

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),是奇函數(shù).

1)求實(shí)數(shù)m的值;

2)畫(huà)出函數(shù)的圖象,并根據(jù)圖象求解下列問(wèn)題;

①寫(xiě)出函數(shù)的值域;

②若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,的中點(diǎn).

(I)若上的一點(diǎn),且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設(shè)異面直線所成的角為45°,求直線與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在中國(guó),“女排精神”概括的是頑強(qiáng)戰(zhàn)斗、勇敢拼搏精神.在某年度排球超級(jí)杯決賽中,中國(guó)女排與俄羅斯女排相遇,已知前四局中,戰(zhàn)成了,且在決勝局中,中國(guó)隊(duì)與俄羅斯隊(duì)?wèi)?zhàn)成了,根據(jù)中國(guó)隊(duì)與俄羅斯隊(duì)以往的較量,每個(gè)球中國(guó)隊(duì)獲勝的概率為,假定每個(gè)球中國(guó)隊(duì)是否獲勝相互獨(dú)立,則再打不超過(guò)4球,中國(guó)隊(duì)獲得比賽勝利的概率為(

(注:排球的比賽規(guī)則為53勝制,即比賽雙方中的一方先拿到3局勝利為獲勝隊(duì),其中前四局為25分制,即在一方先得到25分,且與對(duì)方的分差大于或等于2分,則先拿到25分的一方勝;若一方拿到25分后,但雙方分差小于2分,則比賽繼續(xù),直到一方領(lǐng)先2分為止;若前四局打成,則決勝局采用15分制.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有9個(gè)連在一起的停車(chē)位,現(xiàn)有5輛不同型號(hào)的轎車(chē)需停放,若要求剩余的4個(gè)車(chē)位中恰有3個(gè)連在起,則不同的停放方法有________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)原點(diǎn)在圓的內(nèi)部,直線與圓交于、兩點(diǎn);以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線和圓的極坐標(biāo)方程,并求的取值范圍;

2)求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在極坐系中,點(diǎn)繞極點(diǎn)順時(shí)針旋轉(zhuǎn)角得到點(diǎn).為原點(diǎn),極軸為軸非負(fù)半軸,并取相同的單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線逆時(shí)針旋轉(zhuǎn)得到曲線.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)點(diǎn)的極坐標(biāo)為,直線過(guò)點(diǎn)且與曲線交于,兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,、、兩兩垂直,,,,為線段上一點(diǎn)(端點(diǎn)除外).

1)若異面直線所成角的余弦值為,求的長(zhǎng);

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家統(tǒng)計(jì)局統(tǒng)計(jì)了我國(guó)近10年(2009年2018年)的GDP(GDP是國(guó)民經(jīng)濟(jì)核算的核心指標(biāo),也是衡量一個(gè)國(guó)家或地區(qū)總體經(jīng)濟(jì)狀況的重要指標(biāo))增速的情況,并繪制了下面的折線統(tǒng)計(jì)圖.

根據(jù)該折線統(tǒng)計(jì)圖,下面說(shuō)法錯(cuò)誤的是

A. 這10年中有3年的GDP增速在9.00%以上

B. 從2010年開(kāi)始GDP的增速逐年下滑

C. 這10年GDP仍保持6.5%以上的中高速增長(zhǎng)

D. 2013年—2018年GDP的增速相對(duì)于2009年—2012年,波動(dòng)性較小

查看答案和解析>>

同步練習(xí)冊(cè)答案