、如圖,在三棱錐P-ABC中,PA⊥底面ABC,△ABC為正三角形,D、E分別是BC、CA的中點。

(Ⅰ) 若PA=AB=2,求三棱錐P-ABC的體積;

(Ⅱ)證明:BE⊥平面PAC

(Ⅲ)如何在BC上找一點F,使AD//平面PEF?并說明理由。

 

【答案】

 

 

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求證:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;
(Ⅲ)求異面直線AB和PC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,AB=AC,D為BC的中點,PO⊥平面ABC,垂足O落在線段AD上.
(Ⅰ)證明:AP⊥BC;
(Ⅱ)已知BC=8,PO=4,AO=3,OD=2.求二面角B-AP-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=
2
PC=
2
AC=
2
BC

(Ⅰ)求證:PA⊥BC; 
(Ⅱ)求二面角P-AB-C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,AB⊥BC,AB=BC=PA=PC,點O、D分別是AC、PC的中點.
( I)求證:OD∥平面PAB;
( II)求PB與平面ABC所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ABC=90°,PA=AB=BC=1,則PC與底面ABC所成角的正切值為
2
2
2
2

查看答案和解析>>

同步練習(xí)冊答案