A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 由平面向量數量積的坐標運算結合輔助角公式化積,可得$sin(C-\frac{π}{6})=\frac{1}{2}$.進一步求得C得答案.
解答 解:∵$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),
∴$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}sinAcosB+\sqrt{3}cosAsinB=\sqrt{3}sin(A+B)$,
又$\overrightarrow{m}$•$\overrightarrow{n}$=1-cos(A+B),∴$\sqrt{3}sin(A+B)=1-cos(A+B)$,
得$\sqrt{3}sinC-cosC=1$,即2$sin(C-\frac{π}{6})=1$,
∴$sin(C-\frac{π}{6})=\frac{1}{2}$.
∵$-\frac{π}{6}<C-\frac{π}{6}<\frac{5π}{6}$,∴$C-\frac{π}{6}=\frac{π}{6}$,則C=$\frac{π}{3}$.
故選:B.
點評 本題考查平面向量的數量積運算,考查了三角函數中的恒等變換應用,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
X | 0 | 1 |
p | 0.3 | 0.7 |
A. | a=10,b=3 | B. | a=3,b=10 | C. | a=100,b=-60 | D. | a=60,b=-100 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 歸納推理,類比推理 | B. | 演繹推理,類比推理 | ||
C. | 類比推理,演繹推理 | D. | 歸納推理,演繹推理 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | |
喜歡 | 10 | 50 |
不喜歡 | 20 | 30 |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,4] | B. | (-∞,4) | C. | (4,+∞) | D. | [4,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{16\sqrt{2}}{3}$cm3 | B. | $\frac{32}{3}$cm3 | C. | 16$\sqrt{2}$cm3 | D. | 32cm3 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com