已知曲線C:x2+y2=9(x≥0,y≥0)與函數(shù)=y=lnx及函數(shù)y=ex的圖象分別交于點(diǎn)A(x1,y1),B(x2,y2),則x12+x22的值為
9
9
分析:先根據(jù)題意畫出圖形,如圖.利用于函數(shù)=y=lnx和函數(shù)y=ex是互為反函數(shù),其函數(shù)=y=lnx及函數(shù)y=ex的圖象關(guān)于直線y=x對稱,曲線C:x2+y2=9(x≥0,y≥0)也是關(guān)于直線y=x對稱,從而曲線C:x2+y2=9(x≥0,y≥0)與函數(shù)=y=lnx及函數(shù)y=ex的圖象的交點(diǎn)A(x1,y1),B(x2,y2)也關(guān)于直線y=x對稱,得出x2=y1.再根據(jù)A(x1,y1)在圓弧x2+y2=9(x≥0,y≥0)上,即可得出答案.
解答:解:畫出圖形,如圖.
由于函數(shù)=y=lnx和函數(shù)y=ex是互為反函數(shù),故函數(shù)=y=lnx及函數(shù)y=ex的圖象關(guān)于直線y=x對稱,從而曲線C:x2+y2=9(x≥0,y≥0)與函數(shù)=y=lnx及函數(shù)y=ex的圖象的交點(diǎn)A(x1,y1),B(x2,y2)也關(guān)于直線y=x對稱,
∴x2=y1
又A(x1,y1)在圓弧x2+y2=9(x≥0,y≥0)上,
x12+y12=9,即x12+x22=9.
故答案為:9.
點(diǎn)評:本小題主要考查函數(shù)對稱性的應(yīng)用、反函數(shù)的應(yīng)用等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2-y|y|=1.
(1)畫出曲線C的圖象,
(2)若直線l:y=x+m與曲線C有兩個公共點(diǎn),求m的取值范圍;
(3)若過點(diǎn)P(0,2)的直線與曲線C在x軸上方的部分交于不同的兩點(diǎn)M,N,求t=
OM
OP
+
OM
PN
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•浦東新區(qū)模擬)已知曲線C:x2-y|y|=1(|x|≤4).
(1)畫出曲線C的圖象,
(2)若直線l:y=kx-1與曲線C有兩個公共點(diǎn),求k的取值范圍;
(3)若P(0,p)(p>0),Q為曲線C上的點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2-y|y|=1(|x|≤4).
(1)畫出曲線C的圖象,
(2)(文)若直線l:y=x+m與曲線C有兩個公共點(diǎn),求m的取值范圍;
(理)若直線l:y=kx-1與曲線C有兩個公共點(diǎn),求k的取值范圍;
(3)若P(0,p)(p>0),Q為曲線C上的點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C:x2-y|y|=1.
(1)畫出曲線C的圖象,
(2)若直線l:y=x+m與曲線C有兩個公共點(diǎn),求m的取值范圍;
(3)若過點(diǎn)P(0,2)的直線與曲線C在x軸上方的部分交于不同的兩點(diǎn)M,N,求t=
OM
OP
+
OM
PN
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年上海市徐匯區(qū)零陵中學(xué)高三3月綜合練習(xí)數(shù)學(xué)試卷(五)(解析版) 題型:解答題

已知曲線C:x2-y|y|=1(|x|≤4).
(1)畫出曲線C的圖象,
(2)(文)若直線l:y=x+m與曲線C有兩個公共點(diǎn),求m的取值范圍;
(理)若直線l:y=kx-1與曲線C有兩個公共點(diǎn),求k的取值范圍;
(3)若P(0,p)(p>0),Q為曲線C上的點(diǎn),求|PQ|的最小值.

查看答案和解析>>

同步練習(xí)冊答案