如圖所示是一幾何體的直觀圖、正(主)視圖、側(左)視圖、俯視圖.

(1)若FPD的中點,求證:AF⊥面PCD;
(2)求幾何體BECAPD的體積.

(1)見解析(2)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,ABEDFC為多面體,平面ABED與平面ACFD垂直,點O在線段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.

(1)證明直線BC∥EF;
(2)求棱錐FOBED的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在棱長為的正方體中,點是棱的中點,點在棱上,且滿足.

(1)求證:;
(2)在棱上確定一點,使、、四點共面,并求此時的長;
(3)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐PABCD的底面ABCD是邊長為2的菱形,∠BAD=60°,已知PBPD=2,PA.
 
(1)證明:PCBD;
(2)若EPA的中點,求三棱錐PBCE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,,,,的中點,的中點,

(1)求證:;
(2)求證:;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直三棱柱中,分別是的中點.

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.

(1)若F為PD的中點,求證:AF⊥面PCD;
(2)證明:BD∥面PEC;
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓柱體的一條母線,過底面圓的圓心是圓上不與點、重合的任意一點,已知棱,

(1)求證:;
(2)將四面體繞母線轉動一周,求的三邊在旋轉過程中所圍成的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1的側棱AA1⊥平面ABC,△ABC為正三角形,且側面AA1C1C是邊長為2的正方形,E是的中點,F在棱CC1上。

(1)當CF時,求多面體ABCFA1的體積;
(2)當點F使得A1F+BF最小時,判斷直線AE與A1F是否垂直,并證明的結論。

查看答案和解析>>

同步練習冊答案