A. | 2016 | B. | 2015 | C. | 2014 | D. | 2013 |
分析 由$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{(n+1)^{2}}}$=1+$\frac{1}{n}$-$\frac{1}{n+1}$,利用裂項(xiàng)求和法求出S=2014+1-$\frac{1}{2015}$,由此能求出不大于S的最大整數(shù)為2014.
解答 解:$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{(n+1)^{2}}}$=$\frac{\sqrt{{n}^{2}(n+1)^{2}+{n}^{2}+(n+1)^{2}}}{n(n+1)}$=$\frac{\sqrt{(1+n+{n}^{2})^{2}}}{{n}^{2}+n}$=$\frac{1+n+{n}^{2}}{{n}^{2}+n}$=1+$\frac{1}{n}$-$\frac{1}{n+1}$,
∴S=$\sqrt{1+\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}}$+$\sqrt{1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}}$+$\sqrt{1+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}}$+…+$\sqrt{1+\frac{1}{201{4}^{2}}+\frac{1}{201{5}^{2}}}$=1+$\frac{1}{1}$-$\frac{1}{2}$+1+$\frac{1}{2}$-$\frac{1}{3}$+1+$\frac{1}{3}$-$\frac{1}{4}$+…+1+$\frac{1}{2014}$-$\frac{1}{2015}$=2014+1-$\frac{1}{2015}$,
∴不大于S的最大整數(shù)為2014,
故選:C.
點(diǎn)評(píng) 本題考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|x| | B. | y=-x3 | C. | y=-(x+1)2 | D. | y=-x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com