若△ABC的外接圓半徑為2,則
a+c
sinA+sinC
=
 
考點(diǎn):正弦定理
專(zhuān)題:解三角形
分析:利用正弦定理列出關(guān)系式,再利用比例的性質(zhì)即可確定出所求式子的值.
解答: 解:∵△ABC的外接圓半徑為2,
∴由正弦定理得:
a
sinA
=
c
sinC
=2R=4,
a+c
sinA+sinC
=
a
sinA
=4,
故答案為:4.
點(diǎn)評(píng):此題考查了正弦定理,以及比例的性質(zhì),熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在拋物線(xiàn)y=4x2上有一動(dòng)點(diǎn)A,試求該點(diǎn)到直線(xiàn)y=4x-5的距離的最小值,并求出此時(shí)點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AB=1,AA1=2,M是AB1上的動(dòng)點(diǎn),且AM=λAB1,N是CC1的中點(diǎn).
(Ⅰ)若λ=
1
2
,求證:MN⊥AA1;
(Ⅱ)若直線(xiàn)MN與平面ABN所成角的正弦值為
3
14
,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2log2a+log2b≥1,則3a+92b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,直線(xiàn)l的方程為ρsin(θ+
π
4
)=
2
2
,則點(diǎn)A(2,
4
)到直線(xiàn)l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)過(guò)其左焦點(diǎn)F1作x軸的垂線(xiàn)交雙曲線(xiàn)于A(yíng),B兩點(diǎn),若雙曲線(xiàn)右頂點(diǎn)在以AB為直徑的圓內(nèi),則雙曲線(xiàn)離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)f(x)=cos2x的圖象按照向量
a
=(
π
2
,1)平移后得到函數(shù)g(x),那么g(
π
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是等差數(shù)列,a1=1,公差d≠0,Sn為其前n項(xiàng)和,若a1,a2,a5成等比數(shù)列,則Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,若a5=0,則有等式a1+a2+…+an=a1+a2+…+a9-n(n<9,n∈N*)成立.類(lèi)比上述性質(zhì):在等比數(shù)列{bn}中,若b6=1,則有等式
 
成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案