【題目】已知具有線性相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:

2

4

6

8

10

3

6

7

10

12

1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)當(dāng)時(shí), 的值;

2)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),則從這五個(gè)點(diǎn)中隨機(jī)抽取2個(gè)點(diǎn),求恰有1個(gè)點(diǎn)落在直線右下方的概率.

參考公式: , .

【答案】(1)答案見解析;(2) .

【解析】試題分析:(1)計(jì)算平均數(shù)與回歸系數(shù),寫出回歸直線方程,利用方程計(jì)算x=20時(shí)y的值;(2)用列舉法求出基本事件數(shù),計(jì)算對(duì)應(yīng)的概率值.

試題解析:

,

,

∴回歸直線方程為

故當(dāng)時(shí),

(Ⅱ)可以判斷,落在直線右下方的點(diǎn)滿足,

故符合條件的點(diǎn)的坐標(biāo)為

共有10種取法,

滿足條件的有6種,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MN分別是邊長(zhǎng)為1的正方形ABCD的邊BCCD的中點(diǎn),將正方形沿對(duì)角線AC折起,使點(diǎn)D不在平面ABC內(nèi),則在翻折過(guò)程中,有以下結(jié)論:

①異面直線ACBD所成的角為定值.

②存在某個(gè)位置,使得直線AD與直線BC垂直.

③存在某個(gè)位置,使得直線MN與平面ABC所成的角為45°.

④三棱錐M-ACN體積的最大值為.

以上所有正確結(jié)論的序號(hào)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】月某城市國(guó)際馬拉松賽正式舉行,組委會(huì)對(duì)名裁判人員進(jìn)(年齡均在歲到歲)行業(yè)務(wù)培訓(xùn),現(xiàn)按年齡(單位:歲)進(jìn)行分組統(tǒng)計(jì):第,第,第,第,第,得到的頻率分布直方圖如下:

(1)若把這名裁判人員中年齡在稱為青年組,其中男裁判名;年齡在的稱為中年組,其中男裁判.試完成列聯(lián)表并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為裁判員屬于不同的組別(青年組或中年組)與性別有關(guān)系?

(2)培訓(xùn)前組委會(huì)用分層抽樣調(diào)查方式在第組共抽取了名裁判人員進(jìn)行座談,若將其中抽取的第組的人員記作,第組的人員記作,第組的人員記作,若組委會(huì)決定從上述名裁判人員中再隨機(jī)選人參加新聞發(fā)布會(huì),要求這組各選人,試求裁判人員不同時(shí)被選擇的概率;

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓C:的左、右項(xiàng)點(diǎn)分別為A1,A2,左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,|F1F2|=,O為坐標(biāo)原點(diǎn).

(1)求橢圓C的方程;

(2)設(shè)過(guò)點(diǎn)P(4,m)的直線PA1,PA2與橢圓分別交于點(diǎn)M,N,其中m>0,求的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)有一塊等腰直角三角形的空地,其中斜邊的長(zhǎng)度為400.為迎接“五一”觀光游,欲在邊界上選擇一點(diǎn),修建觀賞小徑,其中分別在邊界上,小徑與邊界的夾角都為.區(qū)域和區(qū)域內(nèi)種植郁金香,區(qū)域內(nèi)種植月季花.

1)探究:觀賞小徑的長(zhǎng)度之和是否為定值?請(qǐng)說(shuō)明理由;

2)為深度體驗(yàn)觀賞,準(zhǔn)備在月季花區(qū)域內(nèi)修建小徑,當(dāng)點(diǎn)在何處時(shí),三條小徑的長(zhǎng)度和最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時(shí)也解決了很多勞動(dòng)力的就業(yè)問(wèn)題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計(jì)解決退伍軍人轉(zhuǎn)業(yè)為兼職或?qū)B毸緳C(jī)三百多萬(wàn)人次,梁某即為此類網(wǎng)約車司機(jī),據(jù)梁某自己統(tǒng)計(jì)某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、t、

(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;

(2)網(wǎng)約車計(jì)費(fèi)細(xì)則如下:起步價(jià)為5元,行駛路程不超過(guò)時(shí),租車費(fèi)為5元,若行駛路程超過(guò),則按每超出(不足也按計(jì)程)收費(fèi)3元計(jì)費(fèi).依據(jù)以上條件,計(jì)算梁某一天中出車一次收入的均值和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過(guò)點(diǎn)(,1),以原點(diǎn)為圓心、橢圓短半軸長(zhǎng)為半徑的圓經(jīng)過(guò)橢圓的焦點(diǎn).

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)過(guò)點(diǎn)(-1,0)的直線l與橢圓C相交于A,B兩點(diǎn),試問(wèn)在x軸上是否存在一個(gè)定點(diǎn)M,使得恒為定值?若存在,求出該定值及點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)函數(shù)f(x)xsinx,現(xiàn)有下列命題:函數(shù)f(x)是偶函數(shù);函數(shù)f(x)的最小正周期是;點(diǎn),0)是函數(shù)f(x)的圖象的一個(gè)對(duì)稱中心;函數(shù)f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.其中是真命題的是________(寫出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案