【題目】如圖,MN分別是邊長為1的正方形ABCD的邊BCCD的中點,將正方形沿對角線AC折起,使點D不在平面ABC內(nèi),則在翻折過程中,有以下結(jié)論:
①異面直線AC與BD所成的角為定值.
②存在某個位置,使得直線AD與直線BC垂直.
③存在某個位置,使得直線MN與平面ABC所成的角為45°.
④三棱錐M-ACN體積的最大值為.
以上所有正確結(jié)論的序號是__________.
【答案】①③④
【解析】
設(shè)中點,連接,,得到平面,從而可證①正確;假設(shè),從而得到平面,與已知矛盾,從而證明②錯誤,根據(jù),得到與平面所成的角等于與平面所成的角,即,根據(jù)的范圍,從而證明③正確;,從而得到體積最大的情況,求出最大值,可得④正確.
設(shè)中點,連接,,
正方形,,,
所以,,
平面,,
所以平面,
而平面,所以,
即異面直線與所成的角為定值.
故①正確.
若,而,平面,
所以平面,
而平面,所以,
而中,,
所以不可能為直角,故假設(shè)錯誤,
所以②錯誤.
因為分別是的中點,所以,
所以與平面所成的角等于與平面所成的角,
在平面的射影在上,
所以是與平面所成的角,
而,所以一定存在某個位置滿足,
即存在某個位置,使得直線MN與平面所成的角為45°.
故③正確;
,底面,
所以當(dāng)平面平面時,到平面的距離最大,
此時三棱錐的體積最大,
,
所以此時,
故④正確.
故答案為:①③④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y= 4cos2x+4sinxcosx-2,(x∈R)
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值及其相對應(yīng)的x值;
(3)寫出函數(shù)的單調(diào)增區(qū)間;
(4)寫出函數(shù)的對稱軸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線和的交點且為鈍角,若,.
(1)求曲線和的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在R上的奇函數(shù),且對任意都有,當(dāng)時,,則的值為( )
A. B. 1 C. D. -2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,底面ABC為等腰直角三角形,AB=AC=1,BB1=2,∠ABB1=60°.
(I) 證明:AB⊥平面AB1C;
(II) 若B1C=2,求AC1與平面BCB1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知具有線性相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:
2 | 4 | 6 | 8 | 10 | |
3 | 6 | 7 | 10 | 12 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當(dāng)時, 的值;
(2)將表格中的數(shù)據(jù)看作五個點的坐標(biāo),則從這五個點中隨機(jī)抽取2個點,求恰有1個點落在直線右下方的概率.
參考公式: , .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com