【題目】如圖,在菱形ABCD中,∠BAD=60°,線段AD,BD的中點分別為E,F(xiàn).現(xiàn)將△ABD沿對角線BD翻折,則異面直線BE與CF所成角的取值范圍是(

A.( ,
B.( , ]
C.( , ]
D.( ,

【答案】C
【解析】解:可設菱形的邊長為1,則BE=CF= ,BD=1;線段AD,BD的中點分別為E,F(xiàn);
, = ;
=
= =
= ;
由圖看出 ;

;
即異面直線BE與CF所成角的取值范圍是
故選:C.
【考點精析】解答此題的關鍵在于理解異面直線及其所成的角的相關知識,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=log cos( ﹣2x)的遞增區(qū)間是 (
A.[﹣ +kπ, +kπ](k∈Z)
B.[﹣ +kπ,kπ)(k∈Z)
C.[ +kπ, +kπ](k∈Z)
D.[ +kπ, +kπ)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一個周期內的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求g(x)=f(3x+)﹣1在[﹣ , ]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱 中, 的中點.

(1)求證:平面 ;
(2)若 ,求點 到平面 的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點.
(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點,AE⊥PC,AF⊥PB,給出下列結論:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+(a+2)x+5+a,a∈R.
(Ⅰ)若方程f(x)=0有一正根和一個負根,求a的取值范圍;
(Ⅱ)當x>﹣1時,不等式f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等比數(shù)列{an}的前項n和Sn , a2= ,且S1+ ,S2 , S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項公式;
(2)設cn=anbn , 若對任意n∈N+ , 不等式c1+c2+…+cn λ+2Sn﹣1恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=eax﹣x﹣1,其中a≠0.若對一切x∈R,f(x)≥0恒成立,則a的取值集合

查看答案和解析>>

同步練習冊答案