分析 (Ⅰ)圓的極坐標方程為$ρ=2\sqrt{2}cos({θ+\frac{π}{6}})$═$\sqrt{2}$cosθ-$\sqrt{6}$sinθ,即可化為直角坐標方程.
(Ⅱ)$\left\{\begin{array}{l}x=tcosα\\ y=-\frac{{\sqrt{2}}}{2}+tsinα\end{array}\right.$(t為參數(shù)),即y=kx-$\frac{\sqrt{2}}{2}$,曲線C的標準方程:(x-$\frac{\sqrt{6}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=2,圓心到直線的距離d=$\frac{|\frac{\sqrt{6}}{2}k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2-\frac{5}{4}}$,求出k,即可求出求出α的值.
解答 解:(Ⅰ)∵$ρ=2\sqrt{2}cos({θ+\frac{π}{6}})$
=2$\sqrt{2}$(cosθcos$\frac{π}{6}$-sinθsin$\frac{π}{6}$)
=2$\sqrt{2}$($\frac{\sqrt{3}}{2}$cosθ-$\frac{1}{2}$sinθ)
=$\sqrt{6}$cosθ-$\sqrt{2}$sinθ
∴x2+y2=$\sqrt{6}$x-$\sqrt{2}$y,即x2+y2-$\sqrt{6}$x+$\sqrt{2}$y=0;
(Ⅱ)$\left\{\begin{array}{l}x=tcosα\\ y=-\frac{{\sqrt{2}}}{2}+tsinα\end{array}\right.$(t為參數(shù)),即y=kx-$\frac{\sqrt{2}}{2}$,曲線C的標準方程:(x-$\frac{\sqrt{6}}{2}$)2+(y+$\frac{\sqrt{2}}{2}$)2=2,
圓心到直線的距離d=$\frac{|\frac{\sqrt{6}}{2}k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2-\frac{5}{4}}$得:k=±1,
∴直線l的傾斜角為45°或135°.
點評 本題考查點的極坐標和直角坐標的互化,以及利用平面幾何知識解決最值問題.利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[\frac{1}{e}$,+∞) | B. | $[-\frac{1}{e}$,+∞) | C. | (0,e) | D. | $[-\frac{1}{e}$,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 1+$\sqrt{2}$ | C. | 7 | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
運動員 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲 | 8.7 | 9.1 | 9.0 | 8.9 | 9.3 |
乙 | 8.9 | 9.0 | 9.1 | 8.8 | 9.2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 36 | B. | 32 | C. | $4\sqrt{6}$ | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com