雙曲線C:
x2
5
-
y2
4
=1
的焦點(diǎn)為橢圓
x2
a2
+
y2
b2
=1
的焦點(diǎn),且橢圓的短軸長(zhǎng)為2
3
,則該橢圓的標(biāo)準(zhǔn)方程為( 。
分析:求出雙曲線C:
x2
5
-
y2
4
=1
的焦點(diǎn),可得橢圓
x2
a2
+
y2
b2
=1
的焦點(diǎn),根據(jù)橢圓的短軸長(zhǎng)為2
3
,求出a,b的值,即可求橢圓的標(biāo)準(zhǔn)方程.
解答:解:雙曲線C:
x2
5
-
y2
4
=1
的焦點(diǎn)坐標(biāo)為(±3,0).
∵雙曲線C:
x2
5
-
y2
4
=1
的焦點(diǎn)為橢圓
x2
a2
+
y2
b2
=1
的焦點(diǎn),
∴a2-b2=9
∵橢圓的短軸長(zhǎng)為2
3
,
∴b=
3

∴a2=12,
∴橢圓的標(biāo)準(zhǔn)方程為
x2
12
+
y2
9
=1

故選C.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查雙曲線、橢圓的幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列五個(gè)命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題;
②在平面內(nèi),F(xiàn)1、F2是定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|-|MF2|=4|,則點(diǎn)M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件.
④“若-3<m<5則方程
x2
5-m
+
y2
m+3
=1
是橢圓”.
⑤已知向量
a
,
b
,
c
是空間的一個(gè)基底,則向量
a
+
b
,
a
-
b
,
c
也是空間的一個(gè)基底.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個(gè)命題,其中真命題的序號(hào)是
 
(寫出所有真命題的序號(hào)).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),當(dāng)m<-2時(shí)C表示橢圓.
(2)在橢圓
x2
45
+
y2
20
=1上有一點(diǎn)P,F(xiàn)1、F2是橢圓的左,右焦點(diǎn),△F1PF2為直角三角形則這樣的點(diǎn)P有8個(gè).
(3)曲線
x2
10-m
+
y2
6-m
=1(m<6)
與曲線
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)漸近線方程為y=±
b
a
x(a>0,b>0)
的雙曲線的標(biāo)準(zhǔn)方程一定是
x2
a2
-
y2
b2
=1

(5)拋物線y=ax2的焦點(diǎn)坐標(biāo)為(0,
1
4a
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①“若x+y=0,則x,y互為相反數(shù)”的逆命題是“若x,y互為相反數(shù),則x+y=0”.
②在平面內(nèi),F(xiàn)1、F2是定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足||MF1|-|MF2||=4,則點(diǎn)M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件.
④“若-3<m<5則方程
x2
5-m
+
y2
m+3
=1
是橢圓”.
⑤在四面體OABC中,
OA
=
a
,
OB
=
b
OC
=
c
,D為BC的中點(diǎn),E為AD的中點(diǎn),則
OE
=
1
2
a
+
1
4
b
+
1
4
c

⑥橢圓
x2
25
+
y2
9
=1
上一點(diǎn)P到一個(gè)焦點(diǎn)的距離為5,則P到另一個(gè)焦點(diǎn)的距離為5.
其中真命題的序號(hào)是:
①②③⑤⑥
①②③⑤⑥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題,其中所有正確命題的序號(hào)為
①②
①②

①當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過定點(diǎn)P(-2,3);
②已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的焦點(diǎn)坐標(biāo)為(
1
4a
,0
);
④曲線C:
x2
4-k
+
y2
k-1
=1
不可能表示橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列五個(gè)命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題.
②在平面內(nèi),F(xiàn)1、F2是定點(diǎn),丨F1F2丨=6,動(dòng)點(diǎn)M滿足丨MF1丨-丨MF2丨=4,則點(diǎn)M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件.
④“若-3<m<5,則方程
x2
5-m
+
y2
m+3
=1是橢圓”.
⑤已知向量
a
,
b
c
是空間的一個(gè)基底,則向量
a
+
b
a
-
b
,
c
也是空間的一個(gè)基底.
⑥橢圓
x2
25
+
y2
9
=1上一點(diǎn)P到一個(gè)焦點(diǎn)的距離為5,則P到另一個(gè)焦點(diǎn)的距離為5.
其中真命題的序號(hào)是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

同步練習(xí)冊(cè)答案