13.等差數(shù)列{an}的公差為d,關(guān)于x的不等式a1x2+($\fracddki0xt{2}$-a1)x+c≥0的解集為[$\frac{1}{3}$,$\frac{4}{5}$],則使數(shù)列{an}的前n項和Sn最小的正整數(shù)n的值為( 。
A.3B.4C.5D.6

分析 根據(jù)已知中等差數(shù)列{an}的公差為d,關(guān)于x的不等式a1x2+($\fracux9i6yo{2}$-a1)x+c≥0的解集為[$\frac{1}{3}$,$\frac{4}{5}$],我們根據(jù)不等式解析的形式及韋達(dá)定理,易判斷出數(shù)列的首項為正,公差為負(fù),及首項與公差之間的比例關(guān)系,進(jìn)而判斷出數(shù)列項的符號變化分界點,即可得到答案.

解答 解:∵關(guān)于x的不等式${a_1}{x^2}+(\frac3ncbi13{2}-{a_1})x+c≥0$的解集為$[\frac{1}{3},\frac{4}{5}]$,
則$\frac{1}{3}$,$\frac{4}{5}$是一元二次方程${a}_{1}{x}^{2}+$($\fracfglbjt5{2}-{a}_{1}$)x+c=0的兩個實數(shù)根,
∴$\frac{1}{3}$+$\frac{4}{5}$=$\frac{{a}_{1}-\fracfy50w1f{2}}{{a}_{1}}$,∴a1=-$\frac{15}{4}$d<0,∴a4=a1+3d=-$\frac{15}{4}$d+3d=-$\frac{3}{4}$d<0,
a5=a1+4d═-$\frac{15}{4}$d+4d=$\fracrn6honz{4}$>0.
∴使數(shù)列{an}的前n項和Sn最小的正整數(shù)n的值為4.
故選:B.

點評 本題考查了數(shù)列的函數(shù)性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2x+2ax-b(a,b∈R)滿足f(-2)=$\frac{17}{4}$,f(3)=$\frac{65}{8}$.
(1)判斷并證明函數(shù)f(x)在(-∞,0]上的單調(diào)性;
(2)若不等式f(x)-2t≥0對于?x∈(-∞,+∞)恒成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow$|=|2$\overrightarrow{a}$+$\overrightarrow$|=1,則|$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知m,n是不重合的兩條直線,α,β是不重合的兩個平面.下列命題:
①若α⊥β,m⊥α,則m∥β;
②若m⊥α,m⊥β,則α∥β;
③若m∥α,n⊥α,則m⊥n;
④若m∥α,m?β,則α∥β.
其中所有真命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x-3,且f(0)=2.
(1)求f(x)的解析式;
(2)若g(x)=-2x+m,且y=f(x)的圖象恒在y=g(x)的圖象上方,試確定實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.中國人口已經(jīng)出現(xiàn)老齡化與少子化并存的結(jié)構(gòu)特征,測算顯示中國是世界上人口老齡化速度最快的國家之一,再不實施“放開二胎”新政策,整個社會將會出現(xiàn)一系列的問題,若某地區(qū)2015年人口總數(shù)為45萬,實施“放開二胎”新政策后專家估計人口總數(shù)將發(fā)生如下變化:從2016年開始到2025年每年人口比上年增加0.5萬人,從2026年開始到2035年每年人口為上一年的99%.
(1)求實施新政策后,從2016年開始到2035年,第n年的人口總數(shù)an的表達(dá)式;
(2)若新政策實施后的2016年到2035年人口平均值超過49萬,則需調(diào)整政策,否則繼續(xù)實施,問到2035年后是否需要調(diào)整政策?(說明:0.9910=(1-001)10≈0.9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)$f(x)=\sqrt{x}$的反函數(shù)是f-1(x)=x2(x≥0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C的中心為坐標(biāo)原點,F(xiàn)是該橢圓在y軸的正半軸上的一個焦點,其短軸長為$2\sqrt{2}$,離心率為$\frac{{\sqrt{3}}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F分別作斜率為k1,k2的直線交橢圓C,得到弦AB,CD它們的中點分別是M,N,當(dāng)k1k2=1時,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\sqrt{2}$(sin2ωxcos$\frac{π}{4}$+cos2ωx•sin$\frac{π}{4}$)(ω>0),且f(x)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f($\frac{α}{2}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{2}}{3}$,且α、β∈(-$\frac{π}{2}$,$\frac{π}{2}$),求cos(α+β)的值.

查看答案和解析>>

同步練習(xí)冊答案