分析 (Ⅰ)設橢圓方程為:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0),由短軸長為$2\sqrt{2}$,b=$\sqrt{2}$,離心率e=$\frac{c}{a}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{{\sqrt{3}}}{3}$,即可求得a的值,代入即可求得橢圓方程;
(Ⅱ)設直線AB的方程為y=k1x+1,代入橢圓方程,有韋達定理及中點坐標公式,即可求得M的坐標,同理求得N點坐標,求得直線MN的斜率,根據(jù)直線的兩點式方程,即可求得直線MN的方程,化簡整理可得y=3(k1+k2)x+2,因此直線MN過定點(0,3).
解答 解:(Ⅰ)由題意可知:橢圓的焦點在y軸上,設橢圓方程為:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1$(a>b>0),
由短軸長為$2\sqrt{2}$,即2b=2$\sqrt{2}$,b=$\sqrt{2}$,
離心率e=$\frac{c}{a}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{{\sqrt{3}}}{3}$,解得:a2=3,
∴橢圓C的方程$\frac{{y}^{2}}{3}+\frac{{x}^{2}}{2}=1$;
(Ⅱ)證明:由(Ⅰ)可知:c=1,則焦點F(0,1),
顯然直線AB的斜率存在,設直線AB的方程為y=k1x+1,
$\left\{\begin{array}{l}{y=k{x}_{1}+1}\\{\frac{{y}^{2}}{3}+\frac{{x}^{2}}{2}=1}\end{array}\right.$,整理得:(2k12+3)x2+4k1x-4=0,
設A(x1,y1),B(x2,y2),
由韋達定理可知:x1+x2=-$\frac{4{k}_{1}}{2{k}_{1}^{2}+3}$,x1•x2=-$\frac{4}{2{k}_{1}^{2}+3}$,
y1+y2=(kx1+1)+(kx2+1)=k(x1+x2)+2=$\frac{6}{2{k}_{1}^{2}+3}$,
∴弦AB的中點M(-$\frac{2{k}_{1}}{2{k}_{1}^{2}+3}$,$\frac{3}{2{k}_{1}^{2}+3}$),
同理,弦CD的中點N(-$\frac{2{k}_{2}}{2{k}_{2}^{2}+3}$,$\frac{3}{2{k}_{2}^{2}+3}$),
則直線MN的方程是:$\frac{y-\frac{3}{2{k}_{1}^{2}+3}}{\frac{3}{2{k}_{2}^{2}+3}-\frac{3}{2{k}_{1}^{2}+3}}$=$\frac{x+\frac{2{k}_{1}}{2{k}_{1}^{2}+3}}{-\frac{2{k}_{2}}{2{k}_{2}^{2}+3}+\frac{2{k}_{1}}{2{k}_{1}^{2}+3}}$,
整理得:$\frac{y-\frac{3}{2{k}_{1}^{2}+3}}{3({k}_{1}+{k}_{2})}$=$\frac{x+\frac{2k}{2{k}_{1}^{2}+3}}{3-2{k}_{1}{k}_{2}}$,
由k1k2=1,
則y=3(k1+k2)x+$\frac{3({k}_{1}+{k}_{2})×2{k}_{1}+3}{2{k}_{1}^{2}+3}$=3(k1+k2)x+3,
直線MN的方程為:y=3(k1+k2)x+3,
∴直線MN過定點(0,3).
點評 本題考查橢圓的標準方程及簡單集合性質,考查直線與橢圓的位置關系,考查韋達定理即中點坐標公式的應用,考查計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{2}$或-1 | D. | -$\frac{\sqrt{3}}{2}$或0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | $\sqrt{15}$ | C. | 4 | D. | $\sqrt{17}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com